
Week 1

Magnus Madsen
Friday 14th March, 2025 at 15:00



Week 1: Outline
Tu

es
da

y

Lecture (45min)
• Introduction to Declarative Logic Programming
• Introduction to Datalog
• Getting Started with Datalog in Flix

Exercises (45min)
• Work on the assignment alone or together in small groups.

T
hu

rs
da

y Lecture (45min)
• Model-Theoretic Semantics
• Fixpoint Semantics
• Stratified Negation

Exercises (45min)
• Work on the assignment alone or together in small groups.
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Quote of the Day

“To know a second language, is to have a second soul.”

— Charlemagne
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Pull Requests are Welcome

You can improve the course material!
• Exercises are in src/weekX.md

• Slides are in slides/weekX.tex

PRs can be submitted on GitHub:
https://github.com/magnus-madsen/advprog/
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Introduction to
Declarative Logic Programming



Programming Paradigms

Imperative
Programming

Object-Oriented
Programming

Functional
Programming

Logic
Programming
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Declarative Programming

What is a declarative programming language?

“Denoting high-level programming languages which can be used to solve prob-
lems without requiring the programmer to specify an exact procedure to be
followed.”

— The Oxford Dictionary

“The what, not the how.”
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Declarative Programming Languages

Examples:

• Hypertext Markup Language (HTML)
• Cascading Style Sheets (CSS)
• Structured Query Language (SQL)
• Regular Expressions
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Example: Regular Expressions

A regular expression is a declarative description of a set of strings.

For example, the regular expression r:

r = (ab)⋆ + c

Describes the set of strings consisting of any number of ab’s or a single c.

We may want to ask: Is the string “aba” in the language of r?

We can compute the answer to this question in multiple ways:

• We can construct a finite state automaton (FA) and run the string on it.
• We can write a regular expression interpreter and run the string on it.
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Why does it matter?

In high-school you may have seen complex equations of the form:

2x = 6

We can compute the solution to such an equation by various means.

• Guess! (Yes, why not?)
• Use algebraic simplifications (subtract x on both sides, and so on).
• Rewrite the equation to a system of linear equalities and use Gauss-Jordan

Elimination (reduction to row echelon form).
• Rewrite the equation to a system of linear inequalities and use Fourier–Motzkin

Elimination.

Upshot: We agree on the meaning of the equation and we can check whether a
proposed solution is a valid solution.
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Logic Programming

What is a logic programming language?

“Logic programming is a type of programming paradigm which is largely based
on formal logic. Any program written in a logic programming language is a
set of sentences in logical form, expressing facts and rules about some problem
domain.”

— Wikipedia
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Declarative Logic Programming

The programmer writes a collection of logic constraints.

The compiler and runtime computes the solution to the constraints.

• It freely chooses the algorithms and data structures required to do so.
• For example, it might solve the constraints in parallel.

Declarative logic programming offers several benefits:

• no side-effects + no explicit control-flow
• Programs are easy to understand.
• Programs are easy to modify and extend.
• Programs can be structured in any order.

• Strong guarantees about termination.

Challenge: Logic programming requires a different mindset.
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Introduction to Datalog



Datalog

Datalog is a simple, yet powerful declarative logic programming language.

• Research on Datalog goes back to the 1970s in the fields of artificial intelligence,
deductive databases, and knowledge representation.

• Datalog (and Prolog) are cornerstones of classical A.I. based on symbolic
reasoning — before the golden age of machine learning.

A Datalog program is essentially a collection of Horn clauses:

∀x1, · · · , xn.P0(t · · · )⇐ P1(t · · · ), · · · ,Pm(t · · · ).

which allow us to derive new knowledge from existing knowledge.

Datalog and Prolog are closely related, but should not be confused.
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Real-World Applications

Datalog has been successfully used in a range of applications:

• in large-scale points-to analysis of Java programs.
• as an alternative foundation for the Rust borrow checker.
• to identify misconfigurations or security vulnerabilities in AWS networks.

Datalog is a surgical instrument: You use it when the problem calls for it.
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Expressive Power

Prolog

Datalog¬

Datalog

RA
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Example

Find a one-way trip from Toronto to Billund with the same airline.
Route(x, airline , y) :- Leg(x, airline , y).
Route(x, airline , z) :-

Route(x, airline , y),
Leg(y, airline , z).

OneWay(airline) :- Route("YYZ", airline , "BLL").

Find a round-trip from Toronto to Billund with the same airline.
TwoWay(airline) :-

Route("YYZ", airline , "BLL"),
Route("BLL", airline , "YYZ").
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Datalog Programs

A Datalog program p is a finite sequence of constraints:

p ∈ Program = c1 · · · cn

The order of constraints is immaterial.

Note: The shortest Datalog program is the empty sequence of constraints.
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Datalog Constraints

A Datalog constraint c consists of a head and a body:

c ∈ Constraint = A0 ⇐ A1, · · · ,An.

Each Ai is an atom. The atom A0 is the head. The atoms A1, · · · ,AN are the body.

The sequence of body atoms may be empty.

A fact is a constraint with an empty body.

A rule is a constraint with a non-empty body.
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Datalog Atoms and Terms

A Datalog atom A is a predicate symbol and a finite sequence of terms:

A ∈ Atom = p(t1, · · · , tn)

A predicate symbol p is an identifier, i.e. a name.

A term t is either a constant k or a variable x:

t ∈ Term = k | x.

A constant k is a primitive value, e.g. a number of string.
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Datalog Grammar

The complete grammar for Datalog is:

p ∈ Program = c1 · · · cn

c ∈ Constraint = A0 ⇐ A1, · · · ,An.

A ∈ Atom = p(t1, · · · , tn)

t ∈ Term = k | x.

p ∈ Predicates = is a finite set of predicate symbols.
x ∈ Variables = is a finite set of variable symbols.

k ∈ Constants = is a finite set of constants.
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Example

Rule︷ ︸︸ ︷
OneWay(airline)⇐ Route(”YYZ”, airline, ”BLL”).︸ ︷︷ ︸ ︸ ︷︷ ︸

Head Body

Atom︷ ︸︸ ︷
Route(”YYZ”, airline, ”BLL”).︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Predicate Const Var Const
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Ground Atoms and Rules

An atom is said to be ground if it does not contain a variable.

A rule is said to be ground if it all of its atoms are ground.

For example:
A(1, 2, 3). // Ground Atom
A(1, 2, 3) :- B(2), C(3). // Ground Rule

20



Safety

A Datalog program P is safe if:

1. Every fact in P is ground.
2. Every variable x that occurs in the head of a rule also occurs in its body1.

For example:
A(1, x). // unsafe , violates (1)
A(x, y) :- B(x). // unsafe , violates (2)
A(x, _) :- B(x). // unsafe , violates (2)
A(1, x) :- C(x, y). // OK

1This is sometimes called the range restriction property.
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Theoretical Properties

Datalog has several important theoretical properties:

• Every Datalog program has a unique solution.
• Every Datalog program eventually terminates.
• Every polynomial time algorithm can be expressed in Datalog.

Upshot: Debugging is easy!
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A Larger Example (1/2)

Friend("Cartman", "Kyle").
Friend("Cartman", "Stan").
Friend("Kyle", "Cartman").
Friend("Kyle", "Stan").
Friend("Stan", "Cartman").
Friend("Stan", "Kyle").
Friend("Stan", "Wendy").
Friend("Wendy", "Stan").

Interest("Cartman", "Politics").
Interest("Cartman", "Guitar Hero").
Interest("Kyle", "Guitar Hero").
Interest("Stan", "Guitar Hero").
Interest("Wendy", "Politics").
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A Larger Example (2/2)

Friend("Cartman", "Kyle").
Friend("Cartman", "Stan").
Friend("Kyle", "Cartman").
Friend("Kyle", "Stan").
Friend("Stan", "Cartman").
Friend("Stan", "Kyle").
Friend("Stan", "Wendy").
Friend("Wendy", "Stan").

Interest("Cartman", "Politics").
Interest("Cartman", "Guitar Hero").
Interest("Kyle", "Guitar Hero").
Interest("Stan", "Guitar Hero").
Interest("Wendy", "Politics").

FriendOfFriend(x, z) :-
Friend(x, y),
Friend(y, x),
Friend(y, z),
if x != z.

ShareInterest(x, y) :-
Interest(x, i),
Interest(y, i),
if x != y.

FriendSuggestion(x, y) :-
FriendOfFriend(x, y),
ShareInterest(x, y),
not Friend(x, y).

24



Getting Started with Datalog in Flix



Theory vs. Practice

We study Datalog in its purest form: as a minimal calculus.

• A bit like the lambda calculus of logic programming.
• In real life, no one writes functional programs in the pure lambda calculus.
• Similarly, no one writes logic programs in pure Datalog.

In practice, we want a programming language with amenities like:

• extensions that increase the expressive power.
• type systems to prevent mistakes.
• IDE support.
• ... and more ...
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Datalog Dialects and Implementations (1/2)

There are many object-oriented languages:

• E.g. Java, C#, JavaScript, Python, Smalltalk, ...

There are many relational database management systems:

• E.g. MSSQL, MySQL, Oracle DBMS, IBM DB2, SQLite, ...

In the same vein, there are also many Datalog dialects and solvers:

• DLV is an established commercial Datalog engine https://www.dlvsystem.it/

• Logica is an open source Datalog engine released by Google https://logica.dev/

• Souffle is a open source and highly scalable Datalog engine
https://souffle-lang.github.io/

26
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Datalog Dialects and Implementations (2/2)

In this course, we shall use the Flix programming language:

• Flix is fully-blown functional, logic, and imperative programming language.
• A unique feature of Flix is its support for Datalog as a strongly-typed deeply

embedded domain specific language (EDSL).
• Flix is developed by researchers from several universities, including Aarhus

University, the University of Waterloo (Canada), the University of Copenhagen,
and the University of Tubingen (Germany).
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The Flix Playground (1/2)

Flix has an online playground available at:

https://play.flix.dev/

Note: The playground runs on a shared server and may be slow.

28
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The Flix Playground (2/2)
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The Flix VSCode Extension (1/2)

Flix has a fully-featured Visual Studio Code (VSCode) extension.

To run Flix on your machine:

• Ensure that you have Visual Studio Code installed.
• Ensure that you have Java 21 (or later) installed.

• https://adoptium.net/

• Follow the instructions at:
• https://flix.dev/get-started/

Note: VSCode must be used in project mode, i.e. “File -> Open Folder”.

30
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The Flix VSCode Extension (2/2)
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Flix – An Example to Get You Started

Here is a simple example program you can copy-and-paste to get started:
def main(): Unit \ IO =

let db = #{
Edge(1, 2).
Edge(2, 3).
Edge(3, 4).

};
let pr = #{

Path(x, y) :- Edge(x, y).
Path(x, z) :- Path(x, y), Edge(y, z).

};
let result = query db, pr select (x, y) from Path(x, y);
println(result)
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Summary

Declarative Programming

• the what, not the how.

Logic programming

• programs as logic constraints: facts and rules.
• infer new knowledge from existing knowledge.

Datalog is a simple, yet powerful declarative logic programming language.

• a Datalog program is a collection of facts and rules.
• every Datalog program has a unique and efficiently computable solution.
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Quote of the Day

“A language that doesn’t affect the way you think about programming, is not worth
knowing.”

— Alan Perlis
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Pull Requests are Welcome

You can improve the course material!
• Exercises are in src/weekX.md

• Slides are in slides/weekX.tex

PRs can be submitted on GitHub:
https://github.com/magnus-madsen/advprog/

36
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Model-Theoretic Semantics



Extensional vs. Intensional

Given a Datalog program P:

• The extensional database (EDB) is the set of facts already in P.
• The intensional database (IDB) is the set of facts derivable from P.

An extensional definition defines an object by enumeration.

• E.g. a fruit is an apple, or an apricot, or an avocado, or a banana, or …

An intensional definition defines an object by its necessary and sufficient
conditions.

• E.g. a fruit is the sweet and fleshy product of a tree or other plant that contains
seed and can be eaten as food.
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Model-theoretic Semantics (1/2)

The model-theoretic semantics define the meaning of a Datalog program in terms of
interpretations and models. Briefly,

• An interpretation is a set of facts.
• A model is an interpretation that satisfy all constraints in the program.
• The minimal model, which is unique, is smaller than all other models.

• We think of the minimal model as the solution to a Datalog program.

The model-theoretic semantics describes the what, not the how.
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Model-theoretic Semantics (1/2)

We will need to learn several new definitions and concepts:

• Herbrand Base and Herbrand Universe
• Interpretations
• Truth
• Models
• Minimality

But fear not, these definitions and concepts are not too difficult.
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Running Example

We will use the following simple Datalog program P:

GrandParent(x, z) :- Parent(x, y), Parent(y, z).

Parent("Bart", "Homer").
Parent("Lisa", "Homer").
Parent("Homer", "Grampa").
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Herbrand Universe

The Herbrand Universe U of a Datalog program P is the set of all constants
appearing anywhere in P.

For example, the Herbrand Universe of P is the set:

U = {”Bart”, ”Lisa”, ”Homer”, ”Grampa”}
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Herbrand Base

The Herbrand Base B of a Datalog program P is the set of all ground atoms with
predicates symbols drawn from P and terms drawn from the Herbrand Universe U .
For our example, the Herbrand Base of P is the set:

B =



Parent(”Bart”, ”Bart”), GrandParent(”Bart”, ”Bart”),
Parent(”Bart”, ”Lisa”), GrandParent(”Bart”, ”Lisa”),
Parent(”Bart”, ”Homer”), GrandParent(”Bart”, ”Homer”),
Parent(”Bart”, ”Grampa”), GrandParent(”Bart”, ”Grampa”),
Parent(”Lisa”, ”Bart”), GrandParent(”Lisa”, ”Bart”),
Parent(”Lisa”, ”Lisa”), GrandParent(”Lisa”, ”Lisa”),
Parent(”Lisa”, ”Homer”), GrandParent(”Lisa”, ”Homer”),
Parent(”Lisa”, ”Grampa”), GrandParent(”Lisa”, ”Grampa”),
· · · · · ·
Parent(”Grampa”, ”Grampa”), GrandParent(”Grampa”, ”Grampa”),


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Interpretations

An interpretation I ⊆ B is a subset of the Herbrand Base.

For example,

I =
{

Parent(”Bart”, ”Homer”), GrandParent(”Bart”, ”Grampa”),
Parent(”Lisa”, ”Homer”), GrandParent(”Bart”, ”Lisa”)

}

is an interpretation.
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Truth w.r.t. an Interpretation

Given an interpretation I we can determine the truth of a constraint:

• A ground atom A = p(k1, · · · , kn) is true w.r.t. an interpretation I if A ∈ I.
• A conjunction of ground atoms A1, · · · ,An is true w.r.t. an interpretation I if each

atom Ai is true in the interpretation.
• A ground rule A0 ⇐ A1, · · · ,An is true w.r.t. an interpretation if the body

conjunction A1, · · · ,An is false or the head atom A0 is true.
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Example

Given the interpretation:

I =
{

Parent(”Bart”, ”Homer”), GrandParent(”Bart”, ”Grampa”),
Parent(”Lisa”, ”Homer”), GrandParent(”Bart”, ”Lisa”)

}

The ground atom:
Parent(”Lisa”, ”Homer”)

is true.

Moreover, the ground rule:

GrandParent(”Lisa”, ”Lisa”)⇐ Parent(”Bart”, ”Homer”),Parent(”Homer”, ”Grampa”).

is true.
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Models

A model M of a Datalog program P is an interpretation I that makes each ground
instance of each constraint in P true.

A ground instance of a rule is obtained by replacing every variable in a rule with a
constant from the Herbrand universe. For example, the interpretation:

M =


Parent(”Bart”, ”Homer”), GrandParent(”Bart”, ”Grampa”),
Parent(”Lisa”, ”Homer”), GrandParent(”Lisa”, ”Grampa”),
Parent(”Homer”, ”Grampa”)


is a model of the program.
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Minimal Models (1/2)

A model M is minimal if there is no other model M′ such that M′ ⊂ M.

For example, the interpretation on the previous slide was a minimal model.

On other hand, the interpretation:

M =


Parent(”Bart”, ”Homer”), GrandParent(”Bart”, ”Grampa”),
Parent(”Lisa”, ”Homer”), GrandParent(”Lisa”, ”Grampa”),
Parent(”Homer”, ”Grampa”), GrandParent(”Homer”, ”Homer”)


is a model, but it is not minimal.

Intuition: A model satisfies the constraints, but may contain superfluous facts.
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Minimal Models (2/2)

Theorem: Given two models M1 and M2 of a Datalog program P the intersection
M1 ∩M2 is also a model of P.

Theorem: The minimal model is the intersection of all models.

Upshot: The minimal model is unique!

48



Fixpoint Semantics



Computing Minimal Models (1/4)

We now have the mathematical foundations to answer questions such as:

• When is an interpretation a model?
• When is a model minimal?
• What is the solution to a Datalog program?

What we lack is method to compute the minimal model of a program.

• We need the how. Enter the fixpoint semantics.
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Computing Minimal Models (2/4)

Assume that I is an interpretation of a Datalog program P.

We define the immediate consequence operator TP as the head atoms of each
ground rule instance satisfied by I. For example, if we have the interpretation:

I =
{

Parent(”Bart”, ”Homer”),Parent(”Homer”, ”Grampa”)
}

We can derive the fact:

GrandParent(”Bart”, ”Grampa”)

Intuitively, we can think of TP as computing the set of facts that can be inferred in
one step from the interpretation I, i.e. its direct consequences.
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Computing Minimal Models (3/4)

We can use the immediate consequence operator TP to compute the minimal model of
a Datalog program as the sequence:

Iteration 1 = TP(∅)
Iteration 2 = TP(TP(∅))
Iteration 3 = TP(TP(TP(∅)))
Iteration i = Ti

P(∅) = TP(Ti
P(∅))

That is, we repeatedly apply TP, starting from the empty set, and until we do not infer
any new facts.

Formally, we compute the least fixpoint of TP.
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Computing Minimal Models (4/4)

Theorem: The least fixpoint of the immediate consequence operator TP is equivalent
to the minimal model.

Using the immediate consequence operator to compute the minimal model of a
Datalog program is an example of bottom-up evaluation.

Using TP to compute the minimal model is called naïve evaluation.

A better strategy, used in practice, is called semi-naïve evaluation.

• We shall not discuss it further, but the core idea is to propagate delta sets (i.e.
set differences) which is faster than propagating full sets.
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Stratified Negation



Negation

What if we had the program:
Path(x, y) :- Edge(x, y).
Path(x, z) :- Path(x, y), Edge(y, z).

And we wanted to compute the pairs (x, y) which are not connected by a path? We
can achieve this by using negation:

Unconnected(x, y) :- Vertex(x), Vertex(y), not Path(x, y).

Note: We must bind x and y by using Vertex.
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Datalog Grammer Extended with Negation

We extend the grammar of Datalog to allow negated body atoms:

p ∈ Program = c1 · · · cn

c ∈ Constraint = A0 ⇐ B1, · · · ,Bn.

A ∈ HeadAtom = p(t1, · · · , tn)

B ∈ BodyAtom = p(t1, · · · , tn) | not p(t1, · · · , tn)

t ∈ Term = k | x.

p ∈ Predicates = is a finite set of predicate symbols.
x ∈ Variables = is a finite set of variable symbols.

k ∈ Constants = is a finite set of constants.
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Safety for Datalog Programs with Negation

A Datalog program P which uses negation is safe if:

1. Every fact in P is ground.
2. Every variable x that occurs in the head of a rule also occurs in its body.
3. Every variable that occurs in a negative body atom also occurs in a positive body

atom.

For example:
A(x) :- not B(x). // unsafe , violates (3)
A(x) :- B(x), not C(x). // OK
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Problems with Unrestricted Negation

Unfortunately, unrestricted negation causes problems. Consider the program:

P(x)⇐ not Q(x).
Q(x)⇐ not P(x).

Assume that the program contains the constant 42.

Now this program has two models:

M1 = {P(42)} M2 = {Q(42)}

Neither of which is minimal! Yikes!
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Stratified Negation

We side-step these difficulties with stratified Datalog programs which disallow
recursion through negation.

The idea is that we take a Datalog program P, with negation, and view it as a
sequence of programs P1, · · · ,Pn:

P1 P2 Pi Pi+1

The computed facts (the IDB) of Pi become the facts (the EDB) of Pi+1.

• Critically, we must partition the predicate symbols such that if p depends on q
then q occurs in an earlier or the same program.
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Example

The Datalog program:
Path(x, y) :- Edge(x, y).
Path(x, z) :- Path(x, y), Edge(y, z).
Unconnected(x, y) :- Vertex(x), Vertex(y), not Path(x, y).

is stratified as shown by the partition:

P0 = {Edge,Path,Vertex} and P1 = {Unconnected}
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Precedence Graph

Given a Datalog program P, we define the precedence graph PG:

• If there is a rule A⇐ · · · ,B, · · · then there is an edge A +← B.
• If there is a rule A⇐ · · · ,not B, · · · then there is an edge A −← B.

Theorem. A Datalog program P is stratifiable if and only if its precedence graph PG
contains no cycle with an edge labeled −.

59



Precedence Graph

Given a Datalog program P, we define the precedence graph PG:

• If there is a rule A⇐ · · · ,B, · · · then there is an edge A +← B.
• If there is a rule A⇐ · · · ,not B, · · · then there is an edge A −← B.

Theorem. A Datalog program P is stratifiable if and only if its precedence graph PG
contains no cycle with an edge labeled −.

59



Example

The Datalog program:
Husband(x) :- Man(x), Married(x).
Bachelor(x) :- Man(x), not Husband(x).

is stratified with the graph on the right.

Bachelor

Husband

Man

Married

+
+

+

–
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Example

The Datalog program:
Husband(x) :- Man(x), not Bachelor(x).
Bachelor(x) :- Man(x), not Husband(x).

is not stratified with the graph on the right. Bachelor

Husband

Man+
+

––
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Computing the Strata

We can use the precedence graph PG to compute the strata:

1. Compute the precedence graph PG.
2. Compute the strongly connected components of PG.
3. Compute a topological sort of the strongly connected components to determine

an ordering of the strata.

Married Man Husband Bachelor

+

+

+ –
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Stratified Negation

We don’t actually have to compute the precedence graph or any stratification.

• Any half-decent Datalog engine will automatically stratify the program for us.
• However, we must understand stratification, to understand when Datalog

programs with negation are actually meaningful.
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Summary

Declarative Programming

• the what, not the how.

Logic programming

• programs as logic constraints: facts and rules.

Datalog is a simple, yet powerful declarative logic programming language.

• Model-Theoretic Semantics
• Fixpoint Semantics
• Stratified Negation
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