Week 2

Magnus Madsen

Friday 14th March, 2025 at 15:00

Lecture (45min)

- Datalog programs as first-class values in a general-purpose language.
- A row polymorphic type system for Datalog program values.

Exercises (45min)

Work on the assignment alone or together in small groups.

Lecture (45min)

- Datalog program values and rho abstraction.
- Datalog extended with lattice semantics.
- Computing provenance information.

Exercises (45min)

Work on the assignment alone or together in small groups.

Quote of the Day

"A programming language is low level when its programs require attention to the irrelevant."

— Alan Perlis

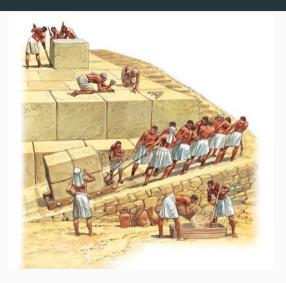
Pull Requests are Welcome

You can improve the course material!

- Exercises are in src/weekX.md
- Slides are in slides/weekX.tex

PRs can be submitted on GitHub:

https://github.com/magnus-madsen/advprog/



Introduction to Flix

The Flix Programming Language (1/2)

A functional, imperative, and declarative logic programming language.

- Developed at Aarhus University in collaboration with programming language researchers from Waterloo (Canada), Tübingen (Germany), and Copenhagen.
- My personal research project.

Free, open source, and ready for use:

https://flix.dev/

The Flix Programming Language (2/2)

Flix is an **advanced** programming language with a **unique** combination of **powerful** programming language features:

- algebraic data types and pattern matching
- tuples and extensible records
- parametric polymorphism
- type classes (traits)
- higher-kinded and associated types
- type match and purity reflection
- a polymorphic effect system

- scoped mutable state
- structured concurrency
- channels and processes
- first-class Datalog programs
- local type inference
- full tail call elimination
- and more ...

First-Class Datalog Programs

Motivation (1/2)

Given the Datalog facts:

```
ParentOf("Pompey", "Strabo").
ParentOf("Gnaeus", "Pompey").
ParentOf("Pompeia", "Pompey").
ParentOf("Sextus", "Pompey").
```

Motivation (1/2)

Given the Datalog facts:

```
ParentOf("Pompey", "Strabo").
ParentOf("Gnaeus", "Pompey").
ParentOf("Pompeia", "Pompey").
ParentOf("Sextus", "Pompey").
```

We can compute the ancestor of every person:

```
AncestorOf(x, y) :- ParentOf(x, y).
AncestorOf(x, z) :- AncestorOf(x, y), AncestorOf(y, z).
```

Motivation (2/2)

Given the additional facts:

```
AdoptedBy("Augustus", "Caesar").
AdoptedBy("Tiberius", "Augustus").
```

We can extend the original program to include adoptions:

```
AncestorOf(x, y) :- AdoptedBy(x, y).
```

Motivation (2/2)

Given the additional facts:

```
AdoptedBy("Augustus", "Caesar").
AdoptedBy("Tiberius", "Augustus").
```

We can extend the original program to include adoptions:

```
AncestorOf(x, y) :- AdoptedBy(x, y).
```

This example demonstrates the *elegance* of Datalog:

- We can extend the meaning of a program by adding new rules.
- i.e. we have extension by *addition*, not by *modification*.

But now we have *two* programs:

- one with biological parents, and
- one with biological parents and adoptions.

But now we have *two* programs:

- one with biological parents, and
- one with biological parents and adoptions.

How do we maintain and develop these programs?

But now we have *two* programs:

- one with biological parents, and
- one with biological parents and adoptions.

How do we maintain and develop these programs?

■ With separate copies? ⇒ multiple maintenance problem?

But now we have **two** programs:

- one with biological parents, and
- one with biological parents and adoptions.

How do we maintain and develop these programs?

- With separate copies? ⇒ multiple maintenance problem?
- With textual generation? ⇒ correctness? expressive power?

But now we have *two* programs:

- one with biological parents, and
- one with biological parents and adoptions.

How do we maintain and develop these programs?

- With separate copies? ⇒ multiple maintenance problem?
- With textual generation? ⇒ correctness? expressive power?
- With procedural macros? ⇒ correctness? expressive power?

But now we have **two** programs:

- one with biological parents, and
- one with biological parents and adoptions.

How do we maintain and develop these programs?

- With separate copies? ⇒ multiple maintenance problem?
- With textual generation? ⇒ correctness? expressive power?
- With procedural macros? ⇒ correctness? expressive power?

Idea: Datalog programs as a first-class values.

Example (1/2)

We define a function which returns a Datalog program value:

```
def getAncestors(withAdoptions: Bool): #{ ... } =
  let p1 = #{
     AncestorOf(x, y) :- ParentOf(x, y).
     AncestorOf(x, z) :- AncestorOf(x, y), AncestorOf(y, z).
};
let p2 = #{
     AncestorOf(x, y) :- AdoptedBy(x, y).
};
if (withAdoptions) (p1 <+> p2) else p1
```

If withAdoptions is true we return the extended program with adoptions. Otherwise we return the original program with only biological parents.

Example (2/2)

We can use the getAncestors as follows:

```
def main(): Unit \ IO =
    let db = \#\{
      ParentOf("Pompey", "Strabo").
      ParentOf("Gnaeus", "Pompey").
      ParentOf("Pompeia", "Pompey").
      ParentOf("Sextus", "Pompey").
      AdoptedBy ("Augustus", "Caesar").
      AdoptedBy("Tiberius", "Augustus").
    };
    let r = query db, getAncestors(true)
            select x from AncestorOf("Tiberius", x);
    println(r)
```

which prints Vector#{Augustus, Caesar}.

First-Class Datalog Programs

We propose the idea of **first-class Datalog programs**:

- A Datalog program value is a set of Datalog facts and rules.
- Datalog programs can be passed as arguments, stored in local variables, returned, and composed with other Datalog programs.

First-Class Datalog Programs

We propose the idea of **first-class Datalog programs**:

- A Datalog program value is a set of Datalog facts and rules.
- Datalog programs can be passed as arguments, stored in local variables, returned, and composed with other Datalog programs.

We can **construct**, **compose**, and **query** Datalog programs.

- The solution to Datalog program value is its minimal model.
- The minimal model is itself a Datalog program value.

Upshot: We can create pipelines of Datalog programs.

Datalog Literals

 \bullet A Datalog literal is written with bracket syntax #{...}.

Datalog Literals

A Datalog literal is written with bracket syntax #{...}.

Injection — Getting facts into Datalog

■ The inject e1, ..., en into A1, ... An expression returns a Datalog program where each tuple in the collection e_i is associated with predicate symbol A_i .

Datalog Literals

A Datalog literal is written with bracket syntax #{...}.

Injection — Getting facts into Datalog

■ The inject e1, ..., en into A1, ... An expression returns a Datalog program where each tuple in the collection e_i is associated with predicate symbol A_i .

Composition

■ The e1 <+> e2 expression combines two Datalog programs e_1 and e_2 .

Datalog Literals

A Datalog literal is written with bracket syntax #{...}.

Injection — Getting facts into Datalog

■ The inject e1, ..., en into A1, ... An expression returns a Datalog program where each tuple in the collection e_i is associated with predicate symbol A_i .

Composition

■ The e1 <+> e2 expression combines two Datalog programs e_1 and e_2 .

Solving — Getting facts out of Datalog

■ The query e1, ..., en select (x1, ..., xm) from A1, ..., A_o expression computes the minimal model of the expressions e_1, \dots, e_n and then it selects the variables x_1, \dots, x_m from the relations A_1, \dots, A_o . The result is a Vector of tuples.

Datalog Literals (1/3)

A Datalog literal is written¹:

¹The empty Datalog literal #{ } is a legal Datalog program value.

Datalog Literals (1/3)

A Datalog literal is written¹:

A Datalog literal may contain facts:

$$\#\{ A(1). A(2). A(3). B(42). \}$$

¹The empty Datalog literal #{ } is a legal Datalog program value.

Datalog Literals (1/3)

A Datalog literal is written¹:

A Datalog literal may contain facts:

$$\#\{ A(1). A(2). A(3). B(42). \}$$

A Datalog literal may contain rules:

$$\#\{A(x) :- B(x), C(x).\}$$

¹The empty Datalog literal #{ } is a legal Datalog program value.

Datalog Literals (2/3)

A Datalog literal may contain both facts and rules:

```
#{ A(1).
A(2).
B(1).
C(x) :- A(x), B(x). }
```

A Datalog program is inert until its minimal model is evaluated with query.

• i.e. in the above Datalog literal the fact C(1) is *not* automatically derived.

Datalog Literals (3/3)

Datalog program values are first-class:

- We can store them in local variables.
- We can pass them as arguments to functions.
- We can return them from functions.
- We can store them inside data structures (e.g. in lists, maps).

Datalog Literals (3/3)

Datalog program values are first-class:

- We can store them in local variables.
- We can pass them as arguments to functions.
- We can return them from functions.
- We can store them inside data structures (e.g. in lists, maps).

Datalog program values do not implement any traits.

- In particular they do not implement Eq[t] nor Order[t].
- Hence, we can only manipulate them using query.

Values as Terms

Primitive values are permitted as terms:

```
#{ A(1, 2, 3). }; // OK
#{ A("Hello"). }; // OK
```

Values as Terms

Primitive values are permitted as terms:

```
#{ A(1, 2, 3). }; // OK
#{ A("Hello"). }; // OK
```

Compound values are also permitted as terms:

```
#{ A((1, 1), (2, 2)). }; // OK
#{ A(Set#{1, 2, 3}). }; // OK
```

Any type which implements Eq[t] and Order[t] can be used as a term.

Values as Terms

Primitive values are permitted as terms:

```
#{ A(1, 2, 3). }; // OK
#{ A("Hello"). }; // OK
```

Compound values are also permitted as terms:

```
#{ A((1, 1), (2, 2)). }; // OK
#{ A(Set#{1, 2, 3}). }; // OK
```

Any type which implements Eq[t] and Order[t] can be used as a term.

Question: What types are then excluded?

Lexical Scope (1/2)

Datalog literals integrate with lexical scope.

For example, we can capture variables from lexical scope:

```
def mkParentOf(c: String, p: String): #{ ... } =
  #{ ParentOf(c, p). }
```

Here c and p are Flix program variables, not Datalog variables.

Lexical Scope (1/2)

Datalog literals integrate with lexical scope.

For example, we can capture variables from lexical scope:

```
def mkParentOf(c: String, p: String): #{ ... } =
  #{ ParentOf(c, p). }
```

Here c and p are Flix program variables, not Datalog variables.

We can use mkParentOf to write:

```
mkParentOf("Pompey", "Strabo") <+> mkParentOf("Sextus", "Pompey")
```

to construct a Datalog program with two ParentOf facts in it.

Lexical Scope (2/2)

We can take this idea further and write a function to convert a list of pairs into a Datalog program value with ParentOf facts:

Lexical Scope (2/2)

We can take this idea further and write a function to convert a list of pairs into a Datalog program value with ParentOf facts:

This works, but ...

Problem: Writing such functions for every data type can get tedious.

Injecting Facts (1/4)

We have an impedance mismatch between functional programming and Datalog:

- Functional languages uses data structures: lists, sets, and maps.
- Datalog uses relations, i.e. sets of facts.

Injecting Facts (1/4)

We have an impedance mismatch between functional programming and Datalog:

- Functional languages uses data structures: lists, sets, and maps.
- Datalog uses relations, i.e. sets of facts.

How can we reconcile the two?

• We need a mechanism to translate between data structures and relations.

We introduce the inject construct as mechanism to associate a collection with a predicate symbol and to translate it into a Datalog representation.

Injecting Facts (2/4)

For example, we can translate a list of tuples:

```
let edges = (1, 2) :: (2, 3) :: (3, 3) :: Nil
```

into a Datalog relation, i.e. a set of facts, using inject:

```
inject edges into Edge
```

which evaluates to the Datalog program value:

```
#{ Edge(1, 2). Edge(2, 3). Edge(3, 3). }
```

Injecting Facts (3/4)

We can use inject to translate multiple heterogeneous collections into relations.

For example,

```
let nodes = Set#{1, 2, 3, 4};
let edges = (1, 2) :: (2, 3) :: (3, 3) :: Nil
inject nodes, edges into Node, Edge
```

evaluates to the Datalog program value:

```
#{ Node(1). Node(2). Node(3). Node(4).
Edge(1, 2). Edge(2, 3). Edge(3, 3). }
```

Injecting Facts (4/4)

The general form of inject is:

```
inject exp_1, exp_2, ... exp_n into sym_1, sym_2, ..., sym_n
```

The inject construct works for any collection that implements Foldable[t].

■ E.g. List[t], Set[t] and Map[k, v], and many more...

Injecting Facts (4/4)

The general form of inject is:

```
inject exp_1, exp_2, ... exp_n into sym_1, sym_2, ..., sym_n
```

The inject construct works for any collection that implements Foldable[t].

• E.g. List[t], Set[t] and Map[k, v], and many more...

Upshot: Foldable[t] can be implemented for user-defined data types, hence inject builds upon an extensible foundation.

Composition

We have already seen that we can compose Datalog programs with:

which evaluates to the union of the constraints in both s_1 and s_2 .

Composition is a well-behaved operation since the order of constraints in a Datalog program value is immaterial.

Composition is a low-level operation and we rarely use it directly.

Querying the Minimal Model (1/3)

Given a Datalog program value:

```
let p = \#\{ A(1). A(2). B(x) :- A(x). \}
```

We can compute its minimal model with query and extract all its $\mbox{\ensuremath{\mathtt{B}}}$ facts:

```
query p select x from B(x)
```

which evaluates to the the vector:

```
Vector#{ 1, 2 }
```

Querying the Minimal Model (2/3)

Given two Datalog program values:

```
let db = #{ A(1). A(2). }
let pr = #{ B(x) :- A(x). }
```

We can use query to compose them and compute their minimal model:

```
query db, pr select x from B(x)
```

which, as before, evaluates to:

```
Vector#{ 1, 2 }
```

Querying the Minimal Model (3/3)

We can use query for more complex queries.

For example, given:

```
let p = \#\{ A(1). A(2). A(3), B(1, 2). \}
```

We can write the more interesting query:

```
query p select (x, y + 1) from A(x), A(y), B(x, y) where x > 0
```

which evaluates to the vector:

```
Vector#{ (1, 3) }
```

Inject and Query

We have seen how inject and query bridge the gap between Datalog and Flix:

- We can use inject to translate any data type, which implements the Foldable trait, into a set of Datalog facts, and
- We can use query to compute the minimal model of a collection of Datalog program values, and to extract tuples as an immutable Vector.

Upshot: We can easily transport data into and out of the Datalog world.

Example I

What does the following program print?

```
def main(): Unit \ IO =
    let p1 = \#\{ Edge(1, 2). Edge(2, 3). \};
    let p2 = \#{}
        Edge(y, x) := Edge(x, y).
    };
    let p3 = \#{}
        Path(x, y) := Edge(x, y).
        Path(x, z) :- Path(x, y), Edge(y, z).
    }:
    let result = query p1, p2, p3 select (a, b) from Edge(a, b);
    println(result)
```

Example II: Trick Question

What does the following program print?

```
def main(): Unit \ IO =
    let x = #{ Leg("BLL", "LH", "FRA"). Leg("FRA", "LH", "YYZ").
               Leg("YYZ", "AC", "YVR"). Leg("YYZ", "AC", "SFO"). };
    let v = \#\{
        Route(x, a, y) :- Leg(x, a, y).
    }:
    let z = \#\{
        Route(x, a, z) :- Route(x, a, y), Leg(y, a, z).
    }:
    let result = query x, z select (src, dst) from Leg(src, dst);
    println(result)
```

A Type System for First-class

Datalog

Why a Type System?

The Flix type system gives us three important properties:

- (Safety) Well-typed programs cannot go wrong.
- (Synthesis) Automatic resolution and derivation of code via traits.
- (**IDE Support**) Auto-complete, automatic refactoring, etc.

Footnote: Flix also has an effect system which enables enforcement of purity.

What could possibly go wrong? (1/3)

Workers shovel raw blue asbestos tailings into drums at an asbestos shovelling competition at Wittenoom, in the Pilbara, WA, in 1962.

What could possibly go wrong? (2/3)

We want to ensure that programmers do not confuse **term types**:

```
let p1 = #{ Edge(1, 2). };
let p2 = #{ Edge("Aarhus", "Copenhagen"). };
p1 <+> p2
```

What could possibly go wrong? (2/3)

We want to ensure that programmers do not confuse **term types**:

```
let p1 = #{ Edge(1, 2). };
let p2 = #{ Edge("Aarhus", "Copenhagen"). };
p1 <+> p2
```

If we try to compile this program, Flix reports:

What could possibly go wrong? (3/3)

We also want to ensure that programmers do not confuse **predicate arity**:

```
let p1 = #{ Edge(1, 2). };
let p2 = #{ Edge(1, 2, 3). };
p1 <+> p2
```

What could possibly go wrong? (3/3)

We also want to ensure that programmers do not confuse **predicate arity**:

```
let p1 = #{ Edge(1, 2). };
let p2 = #{ Edge(1, 2, 3). };
p1 <+> p2
```

If we try to compile this program, Flix reports:

```
>> Unable to unify the types: '(?, ?)' and '(Int32, ?, ?)'.

3 | p1 <+> p2

mismatched types.
```

Polymorphic Type Systems

You are probably already familiar with two types of polymorphism:

- Subtype polymorphism "inheritance"
- Parametric polymorphism "generics"

Polymorphic Type Systems

You are probably already familiar with two types of polymorphism:

- Subtype polymorphism "inheritance"
- Parametric polymorphism "generics"

Flix uses another kind of polymorphism to type Datalog programs:

Row polymorphism

Row Types

A row type is of the form:

$$\rho = \alpha \mid \epsilon \mid \{ p(\tau_1, \cdots, \tau_n) \mid \rho \}$$

where τ is a collection of base types (e.g. Bool, Int32, String).

Row Types

A row type is of the form:

$$\rho = \alpha \mid \epsilon \mid \{ p(\tau_1, \cdots, \tau_n) \mid \rho \}$$

where τ is a collection of base types (e.g. Bool, Int32, String).

We consider rows equivalent up to associativity and commutativity.

Note: The Flix type system ensures that a predicate symbol p can occur at most once in a row.

Example (1/3)

The Datalog program:

```
#{ A(1, 2). B("Hello"). }
```

has the type:

$$\forall \alpha. \left. \{ \textit{A}(\mathsf{Int32},\mathsf{Int32}) \mid \{ \textit{B}(\mathsf{String}) \mid \alpha \} \right\}$$

Example (1/3)

The Datalog program:

has the type:

$$\forall \alpha. \{A(Int32, Int32) \mid \{B(String) \mid \alpha\}\}$$

but it also has the equivalent type:

$$\forall \alpha. \{B(\mathsf{String}) \mid \{A(\mathsf{Int32}, \mathsf{Int32}) \mid \alpha\}\}$$

Example (1/3)

The Datalog program:

has the type:

$$\forall \alpha. \{A(Int32, Int32) \mid \{B(String) \mid \alpha\}\}$$

but it also has the equivalent type:

$$\forall \alpha. \{B(\mathsf{String}) \mid \{A(\mathsf{Int32}, \mathsf{Int32}) \mid \alpha\}\}$$

and more interestingly it also has the *less general* type:

$$\forall \alpha. \{A(Int32, Int32) \mid \{B(String) \mid \{C(Bool) \mid \alpha\}\}\}$$

Example (2/3)

The Datalog program:

```
#{ Path(x, y) :- Edge(x, y). }
```

has the type:

$$\forall \textit{a},\textit{b},\alpha.\left\{\mathsf{Edge}(\textit{a},\textit{b})\mid \left\{\mathsf{Path}(\textit{a},\textit{b})\mid \alpha\right\}\right\}$$

Example (2/3)

The Datalog program:

```
#{ Path(x, y) :- Edge(x, y). }
```

has the type:

$$\forall a, b, \alpha. \{ \mathsf{Edge}(a, b) \mid \{ \mathsf{Path}(a, b) \mid \alpha \} \}$$

whereas the Datalog program:

```
#{ Path(x, z) :- Path(x, y), Edge(y, z) }
```

Example (2/3)

The Datalog program:

```
#{ Path(x, y) :- Edge(x, y). }
```

has the type:

$$\forall a, b, \alpha. \{ \mathsf{Edge}(a, b) \mid \{ \mathsf{Path}(a, b) \mid \alpha \} \}$$

whereas the Datalog program:

#{
$$Path(x, z) :- Path(x, y), Edge(y, z)$$
 }

has the type:

$$\forall a, b, \alpha. \{ \mathsf{Edge}(\underline{b}, b) \mid \{ \mathsf{Path}(a, b) \mid \alpha \} \}$$

Example (3/3)

The two Datalog programs

```
let p1 = #{ A(1). A(2). A(3). };
let p2 = #{ B(1). B(2). B(3). };
```

have the types:

$$\forall \alpha_1. \{A(\mathsf{Int32}) \mid \alpha_1\}$$
 and $\forall \alpha_2. \{B(\mathsf{Int32}) \mid \alpha_2\}$

Example (3/3)

The two Datalog programs

```
let p1 = #{ A(1). A(2). A(3). };
let p2 = #{ B(1). B(2). B(3). };
```

have the types:

$$\forall \alpha_1. \{A(\mathsf{Int32}) \mid \alpha_1\}$$
 and $\forall \alpha_2. \{B(\mathsf{Int32}) \mid \alpha_2\}$

Hence the composition p1 <+> p2 has the type:

$$\forall \alpha_3. \left\{ A(\mathsf{Int32}) \mid \left\{ B(\mathsf{Int32}) \mid \alpha_3 \right\} \right\}$$

Pitfall (1/2)

The following does not work:

```
def f(): #{ Edge(Int32, Int32) } = #{ Edge(1, 2). }
def g(): #{ Path(Int32, Int32) } = #{ Path(2, 3). }
def h(): #{ Edge(Int32, Int32), Path(Int32, Int32) } =
  f() <+> g()
```

Pitfall (1/2)

The following does not work:

```
def f(): #{ Edge(Int32, Int32) } = #{ Edge(1, 2). }
def g(): #{ Path(Int32, Int32) } = #{ Path(2, 3). }
def h(): #{ Edge(Int32, Int32), Path(Int32, Int32) } =
  f() <+> g()
```

Specifically, the Flix compiler reports:

Pitfall (2/2)

We we should have done is to use **open rows**:

```
def f(): #{ Edge(Int32, Int32) | r } = #{ Edge(1, 2). }
def g(): #{ Path(Int32, Int32) | r } = #{ Path(2, 3). }
def h(): #{ Edge(Int32, Int32), Path(Int32, Int32) | r} =
  f() <+> g()
```

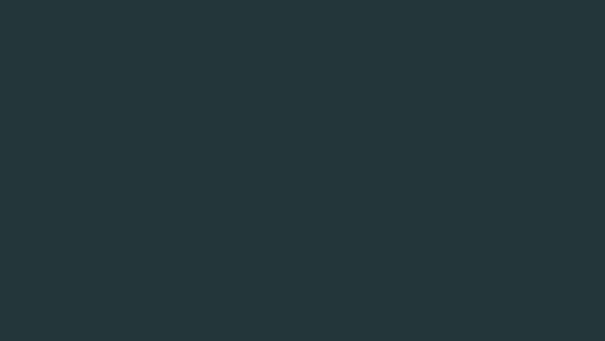
Here, because each row is open, we can build bigger rows.

Summary

Beyond Datalog: Datalog programs as first-class values in Flix:

- Datalog programs are values. We can pass them around.
- Datalog literals may capture variables from the lexical scope.
- Use inject to translate data structures to Datalog facts.
- Use query to compute minimal models and to extract facts.
- A row polymorphic type system ensures safety.

Upshot: We can create modular and reusable families of Datalog programs.



Lecture (45min)

- Datalog programs as first-class values in a general-purpose language.
- A row polymorphic type system for Datalog program values.

Exercises (45min)

• Work on the assignment alone or together in small groups.

Lecture (45min)

- Datalog program values and rho abstraction.
- Datalog extended with lattice semantics.
- Computing provenance information.

Exercises (45min)

Work on the assignment alone or together in small groups.

Quote of the Day

"Every program is a part of some other program and rarely fits."

— Alan Perlis

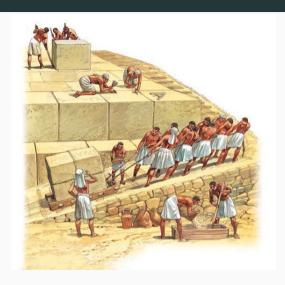
Pull Requests are Welcome

You can improve the course material!

- Exercises are in src/weekX.md
- Slides are in slides/weekX.tex

PRs can be submitted on GitHub:

https://github.com/magnus-madsen/advprog/



Motivation (1/2)

We have seen how Datalog programs can be typed with row types:

```
def reach(): #{ Edge(t, t), Path(t, t) | r} = #{
    Path(x, y) :- Edge(x, y).
    Path(x, z) :- Path(x, y), Edge(y, z).
}
```

Motivation (2/2)

But such types can quickly become unwieldy:

```
def disconnected():
    #{ Edge(t, t), Path(t, t), Vertex(t), Disconnected(t, t) | r} = #{
        Vertex(x) :- Edge(x, _).
        Vertex(y) :- Edge(_, y).
        Path(x, y) :- Edge(x, y).
        Path(x, z) :- Path(x, y), Edge(y, z).
        Disconnected(x, y) :- Vertex(x), Vertex(y), not Path(x, y).
}
```

Motivation (2/2)

But such types can quickly become unwieldy:

```
def disconnected():
    #{ Edge(t, t), Path(t, t), Vertex(t), Disconnected(t, t) | r} = #{
        Vertex(x) :- Edge(x, _).
        Vertex(y) :- Edge(_, y).
        Path(x, y) :- Edge(x, y).
        Path(x, z) :- Path(x, y), Edge(y, z).
        Disconnected(x, y) :- Vertex(x), Vertex(y), not Path(x, y).
}
```

Observation: The Vertex and Path relations are really internally implementations.

Motivation (2/2)

But such types can quickly become unwieldy:

```
def disconnected():
    #{ Edge(t, t), Path(t, t), Vertex(t), Disconnected(t, t) | r} = #{
        Vertex(x) :- Edge(x, _).
        Vertex(y) :- Edge(_, y).
        Path(x, y) :- Edge(x, y).
        Path(x, z) :- Path(x, y), Edge(y, z).
        Disconnected(x, y) :- Vertex(x), Vertex(y), not Path(x, y).
}
```

Observation: The Vertex and Path relations are really internally implementations.

Idea: What do we usually do with internal implementation details? We hide them.

We introduce *rho abstraction* as a mechanism to *hide* predicate symbols.

• A rho abstraction is of the form $\#(A, \ldots)$ -> e where e must be a Datalog expression.

We introduce *rho abstraction* as a mechanism to *hide* predicate symbols.

- A rho abstraction is of the form $\#(A, \ldots)$ -> e where e must be a Datalog expression.
- A rho abstraction hides, by renaming, all predicate symbols *not* listed in the argument list.

We introduce rho abstraction as a mechanism to hide predicate symbols.

- A rho abstraction is of the form #(A, ...) -> e where e must be a Datalog expression.
- A rho abstraction hides, by renaming, all predicate symbols *not* listed in the argument list.
- The row type of a rho abstraction includes only those predicates in the argument list.

We introduce rho abstraction as a mechanism to hide predicate symbols.

- A rho abstraction is of the form #(A, ...) -> e where e must be a Datalog expression.
- A rho abstraction hides, by renaming, all predicate symbols not listed in the argument list.
- The row type of a rho abstraction includes only those predicates in the argument list.
- Evaluation of a rho abstraction renames all hidden predicate symbols with fresh names.

We introduce rho abstraction as a mechanism to hide predicate symbols.

- A rho abstraction is of the form #(A, ...) -> e where e must be a Datalog expression.
- A rho abstraction hides, by renaming, all predicate symbols *not* listed in the argument list.
- The row type of a rho abstraction includes only those predicates in the argument list.
- Evaluation of a rho abstraction renames all hidden predicate symbols with fresh names.

Example: $\#(A, B) \rightarrow \#\{A(123). C("a").\}$ evaluates to $\#\{A(123). C17("a").\}$. where C17 is a fresh predicate symbol that has never been used before.

Rho Abstraction: The Wrong Way

We may think that we can statically rename abstracted predicate symbols:

```
def disconnected(): #{ Edge(t, t), Disconnected(t, t) | r} =
    #(Edge, Disconnected) -> #{
        Vertex17(x) :- Edge(x, _).
        Vertex17(y) :- Edge(_, y).
        // ... omitted for brevity ...
}
```

Rho Abstraction: The Wrong Way

We may think that we can statically rename abstracted predicate symbols:

```
def disconnected(): #{ Edge(t, t), Disconnected(t, t) | r} =
    #(Edge, Disconnected) -> #{
        Vertex17(x) :- Edge(x, _).
        Vertex17(y) :- Edge(_, y).
        // ... omitted for brevity ...
}
```

But this does not work. Why?

Rho Abstraction: The Wrong Way

We may think that we can statically rename abstracted predicate symbols:

```
def disconnected(): #{ Edge(t, t), Disconnected(t, t) | r} =
    #(Edge, Disconnected) -> #{
        Vertex17(x) :- Edge(x, _).
        Vertex17(y) :- Edge(_, y).
        // ... omitted for brevity ...
}
```

But this does not work. Why?

```
let p1 = #(A) -> (#{ Edge(123, 456). } <+> disconnected());
let p2 = #(A) -> (#{ Edge("a", "b"). } <+> disconnected());
query p1, p2 ...
```

Oops. Now the Datalog program contains the facts Vertex17(123) and Vertex17("a") — which is a type error! We must rename predicates at *runtime* to ensure fresh names!

Rho Abstraction: The Right Way

Each evaluation of a rho abstraction introduces fresh names.

Hence, in the previous example, we get:

```
let p1 = #{ Vertex17(123). Vertex17(456). ... };
let p2 = #{ Vertex18("a"). Vertex18("b"). ... };
query p1, p2 ...
```

where there is no longer any type error between Vertex17(123) and Vertex18("a").

Rho Abstraction: The Right Way

Each evaluation of a rho abstraction introduces fresh names.

Hence, in the previous example, we get:

```
let p1 = #{ Vertex17(123). Vertex17(456). ... };
let p2 = #{ Vertex18("a"). Vertex18("b"). ... };
query p1, p2 ...
```

where there is no longer any type error between Vertex17(123) and Vertex18("a").

Upshot: The abstracted predicate symbols have become truely local.

Datalog and Lattice Semantics

We know how to compute reachability in a graph:

```
def reach(origin: t, edges: List[(t, t)]): Vector[t] with Order[t] =
  let db = inject edges into Edge;
  let pr = #{
     Reach(origin).
     Reach(y) :- Reach(x), Edge(x, y).
  };
  query db, pr select x from Reach(x)
```

We know how to compute reachability in a graph:

```
def reach(origin: t, edges: List[(t, t)]): Vector[t] with Order[t] =
  let db = inject edges into Edge;
  let pr = #{
     Reach(origin).
     Reach(y) :- Reach(x), Edge(x, y).
  };
  query db, pr select x from Reach(x)
```

But, what if we wanted to compute the **shortest distance** to every vertex from an origin, i.e. *single-source shortest distance* (SSSD)?

We can use *lattice semantics* to solve this problem:

```
def sssd(origin: t, edges: List[(t, Int32, t)]): ... =
    let db = inject edges into Edge;
    let pr = \#{}
        Dist(origin; Down(0)).
        Dist(y; d1 + Down(d2)) := Dist(x; d1), Edge(x, d2, y).
    }:
    query db, pr select (x, d) from Dist(x; d) |> Vector.toMap
def main(): Unit \ IO =
    println(sssd("a", List#{("a", 2, "b"), ("b", 5, "c")}))
```

Prints $Map#{a \Rightarrow 0, b \Rightarrow 2, c \Rightarrow 7}$.

A lot is going on, so let us break it down.

The fact: Dist(origin; Down(0)).

A lot is going on, so let us break it down.

The fact: Dist(origin; Down(0)).

• Asserts that Dist is a (map) lattice, and *not* a relation (the semicolon).

A lot is going on, so let us break it down.

The fact: Dist(origin; Down(0)).

- Asserts that Dist is a (map) lattice, and not a relation (the semicolon).
- Asserts that the distance to the origin is at most zero.

A lot is going on, so let us break it down.

The fact: Dist(origin; Down(0)).

- Asserts that Dist is a (map) lattice, and not a relation (the semicolon).
- Asserts that the distance to the origin is at most zero.
- The Down data type, which wraps zero, reverses the order on Int32.

The rule: Dist(y; d1 + Down(d2)) :- Dist(x; d1), Edge(x, d2, y).

²Technically, it asserts that the distance is *at least*, but since the lattice order is reversed, *at least* becomes *at most*.

The rule: Dist(y; d1 + Down(d2)) :- Dist(x; d1), Edge(x, d2, y).

• Asserts that Dist is a (map) lattice, and not a relation (as before).

²Technically, it asserts that the distance is *at least*, but since the lattice order is reversed, *at least* becomes *at most*.

The rule: Dist(y; d1 + Down(d2)) :- Dist(x; d1), Edge(x, d2, y).

- Asserts that Dist is a (map) lattice, and not a relation (as before).
- Asserts that the distance to y is at most² d1 + Down(d2) if the distance to x is d1 and the distance on the edge from x to y is d2.

²Technically, it asserts that the distance is *at least*, but since the lattice order is reversed, *at least* becomes *at most*.

The rule: Dist(y; d1 + Down(d2)) := Dist(x; d1), Edge(x, d2, y).

- Asserts that Dist is a (map) lattice, and not a relation (as before).
- Asserts that the distance to y is at $most^2$ d1 + Down(d2) if the distance to x is d1 and the distance on the edge from x to y is d2.

What if there are two paths leading to y but with different distances? In that case, we compute their *join* which, according the reversed lattice order, is the minimum of the two distances— exactly what we want.

²Technically, it asserts that the distance is *at least*, but since the lattice order is reversed, *at least* becomes *at most*.

From Relations to Lattices

We have seen that Flix supports constraints on relations.

But now also constraints on lattices.

We use the semicolon; to indicate when we want lattice semantics.

From Relations to Lattices

We have seen that Flix supports constraints on relations.

But now also constraints on lattices.

We use the semicolon; to indicate when we want lattice semantics.

A lattice has the following components:

- Least and Greatest Elements (LowerBound and UpperBound).
- A partial order (PartialOrder).
- A least upper bound for any two elements (JoinLattice).
- A greatest lower bound for any two elements (MeetLattice).

which we define by implementing instances for the traits in parenthesis.

Joins and Meets

Given the two facts:

```
A(1; Neg).
B(1; Pos).
```

The program:

```
P(x; 1) := A(x; 1).

P(x; 1) := B(x; 1).

Q(x; 1) := A(x; 1), B(x; 1).
```

Joins and Meets

Given the two facts:

```
A(1; Neg).
B(1; Pos).
```

The program:

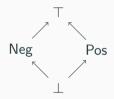
```
P(x; 1) := A(x; 1).

P(x; 1) := B(x; 1).

Q(x; 1) := A(x; 1), B(x; 1).
```

Evaluates to a minimal model with:

```
P(1; Top).
```



Joins and Meets

Given the two facts:

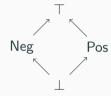
```
A(1; Neg).
B(1; Pos).
```

The program:

```
P(x; 1) := A(x; 1).

P(x; 1) := B(x; 1).

Q(x; 1) := A(x; 1), B(x; 1).
```



Evaluates to a minimal model with:

```
P(1; Top).
```

Warning: Do not mistake , for ;. We must use ; when we want lattice semantics.

The Down Lattice (1/2)

The Down data type is defined as:

```
pub enum Down[a] {
    case Down(a)
}
```

It defines instances for the traits PartialOrder, LowerBound, UpperBound, JoinLattice, and MeetLattice under the *reverse* order on the underlying type a.

The Down Lattice (2/2)

For example, here are two instances:

```
instance PartialOrder[Down[a]] with PartialOrder[a] {
    pub def lessEqual(x: Down[a], v: Down[a]): Bool =
        match (x, y) {
            case (Down.Down(xx), Down.Down(yy)) =>
                yy `PartialOrder.lessEqual` xx
instance JoinLattice[Down[a]] with MeetLattice[a] {
    pub def leastUpperBound(x: Down[a], y: Down[a]): Down[a] =
        match (x, y) {
            case (Down.Down(xx), Down.Down(yy)) =>
                Down.Down(xx `MeetLattice.greatestLowerBound` yy)
```

Relation and Lattice Semantics

We can combine relational and lattice semantics with a new form of stratification:

```
Degree("Kevin Bacon"; Down(0)).
Degree(x; n + Down(1)) :- Degree(y; n), StarsWith(y, x).
Layer(n; Set#{ x }) :- fix Degree(x; n).
Count(n, Set.size(s)) :- fix Layer(n; s)
```

Relation and Lattice Semantics

We can combine relational and lattice semantics with a new form of stratification:

```
Degree("Kevin Bacon"; Down(0)).
Degree(x; n + Down(1)) :- Degree(y; n), StarsWith(y, x).
Layer(n; Set#{ x }) :- fix Degree(x; n).
Count(n, Set.size(s)) :- fix Layer(n; s)
```

This Datalog program computes how many actors are separated from Kevin Bacon by $1,2,3,\cdots$ degrees.

Relation and Lattice Semantics

We can combine relational and lattice semantics with a new form of stratification:

```
Degree("Kevin Bacon"; Down(0)).
Degree(x; n + Down(1)) :- Degree(y; n), StarsWith(y, x).
Layer(n; Set#{ x }) :- fix Degree(x; n).
Count(n, Set.size(s)) :- fix Layer(n; s)
```

This Datalog program computes how many actors are separated from Kevin Bacon by $1, 2, 3, \cdots$ degrees.

Importantly, the use of fix enforces that Degree is computed before Layer which is computed before Count.

Computing Provenance

Motivation

We have seen that we can compute shortest distances with lattice semantics:

```
def sssd(origin: t, edges: List[(t, Int32, t)]): Map[t, Down[Int32]]
```

but what if we wanted to compute the shortest path itself?

What if we try:

```
Reach(origin, Nil; Down(0)).

Reach(y, y :: p; d1 + Down(d2)) :- Reach(x, p; d1), Edge(x, d2, y).
```

Question: What does this compute?

What if we try:

```
Reach(origin, Nil; Down(0)).

Reach(y, y :: p; d1 + Down(d2)) :- Reach(x, p; d1), Edge(x, d2, y).
```

Question: What does this compute?

Oops: What if there are cycles?

We need a new idea (ignoring distances for the moment).

We define a lattice on paths:

• The bottom element is the set of all infinite paths.

We need a new idea (ignoring distances for the moment).

We define a lattice on paths:

- The bottom element is the set of all infinite paths.
- The top element is the empty path.

We need a new idea (ignoring distances for the moment).

We define a lattice on *paths*:

- The bottom element is the set of all infinite paths.
- The top element is the empty path.
- A path is smaller than another path if it is longer, i.e. as we move up the lattice, paths get shorter.

We need a new idea (ignoring distances for the moment).

We define a lattice on paths:

- The bottom element is the set of all infinite paths.
- The top element is the empty path.
- A path is smaller than another path if it is longer, i.e. as we move up the lattice, paths get shorter.

```
Reach(origin; P(Nil)).
Reach(y; cons(y, p)) :- Reach(x; p), Edge(x, y).
```

where

```
enum P { case P(List[Int32]) }
```

We define the PartialOrder and JoinLattice instances as:

```
instance PartialOrder[P] {
   pub def lessEqual(x: P, y: P): Bool =
       let (P(xs), P(ys)) = (x, y);
        List.length(xs) >= List.length(ys)
instance JoinLattice[P] {
   pub def leastUpperBound(x: P, y: P): P =
       let (P(xs), P(ys)) = (x, y);
        if (List.length(xs) <= List.length(ys)) x else y
```

We define the PartialOrder and JoinLattice instances as:

```
instance PartialOrder[P] {
   pub def lessEqual(x: P, y: P): Bool =
       let (P(xs), P(ys)) = (x, y);
        List.length(xs) >= List.length(ys)
instance JoinLattice[P] {
   pub def leastUpperBound(x: P, y: P): P =
       let (P(xs), P(ys)) = (x, y);
        if (List.length(xs) <= List.length(ys)) x else y
```

Question: Do you see any problems here?

We define the PartialOrder and JoinLattice instances as:

```
instance PartialOrder[P] {
   pub def lessEqual(x: P, y: P): Bool =
        let (P(xs), P(ys)) = (x, y);
        List.length(xs) >= List.length(ys)
instance JoinLattice[P] {
   pub def leastUpperBound(x: P, y: P): P =
       let (P(xs), P(ys)) = (x, y);
        if (List.length(xs) <= List.length(ys)) x else y
```

Question: Do you see any problems here?

Answer: Comparing the two paths or computing their join is stupidly expensive!

Idea:

- We modify the lattice to track the path length *implicitly*.
- We introduce an explicit bottom element:

```
enum P {
   case P(Int32, List[Int32])
   case Bottom
}
```

Idea:

- We modify the lattice to track the path length *implicitly*.
- We introduce an explicit bottom element:

```
enum P {
    case P(Int32, List[Int32])
    case Bottom
}
```

Exercise: Add instances for PartialOrder, JoinLattice, etc. for P.

Example: Strongly Connected Components (1/2)

Problem: We are given an undirected graph and we want to compute the SCCs.

```
// `Reachable` is simply bi-directional reachability.
Reachable(n, n) :- Node(n).
Reachable(n1, n2) :- Edge(n1, n2).
Reachable(n1, n2) :- Edge(n2, n1).
Reachable(n1, n2) :- Reachable(n1, m), Reachable(m, n2).
```

Example: Strongly Connected Components (2/2)

```
// `ReachUp` contains nodes that can reach at least one other node
// with a higher value. This contains all nodes that are not the
// maximum node of their component.
ReachUp(n1): - Reachable(n1, n2), if n1 < n2.
// `n` is in a component that is represented by `rep`.
// `rep` is the highest node of the component.
ComponentRep(n, rep) :- Reachable(n, rep), not ReachUp(rep).
// `Component(rep; c)` describes that the node `rep` is the
// representative of the component `c` which is a set of nodes.
Component(rep: Set#{n}) :- ComponentRep(n, rep).
```

Summary

We have seen several extensions that enrich Datalog in Flix:

- Rho abstraction as a mechanism to hide predicate symbols.
- From constraints on relations, to constraints on lattices.
- How to compute provenance information with lattice semantics.

