
Week 3

Magnus Madsen
Friday 14th March, 2025 at 15:00

Week 3: Outline
Tu

es
da

y Lecture (45min)
• Introduction to Prolog
• Introduction to Unification

Exercises (45min)
• Work on the assignment alone or together in small groups.

T
hu

rs
da

y Lecture (45min)
• A Larger Example: The Wolf, Goat, and Cabbage Problem

Exercises (45min)
• Work on the assignment alone or together in small groups.

1

Quote of the Day

“As Will Rogers would have said, there is no such thing as a free variable.”

— Alan Perlis

2

Pull Requests are Welcome

You can improve the course material!
• Exercises are in src/weekX.md

• Slides are in slides/weekX.tex

PRs can be submitted on GitHub:
https://github.com/magnus-madsen/advprog/

3

https://github.com/magnus-madsen/advprog/

Introduction to Prolog

Prolog

Prolog: Programming Logic

4

From Datalog to Prolog: A Shift in Perspective

Datalog is based on bottom-up tabling:

• Datalog has a unique minimal model.
• Datalog offers strong guarantees about termination.
• Limited expressive power.

Prolog is based on top-down search:

• Prolog is goal-driven.
• Prolog programs are imperative: the order of evaluation matters.
• Prolog is Turing-complete – and hence programs may fail to terminate.

Prolog is a logic programming language, but it is like the C of logic languages.

5

From Datalog to Prolog: A Shift in Perspective

Datalog is based on bottom-up tabling:

• Datalog has a unique minimal model.
• Datalog offers strong guarantees about termination.
• Limited expressive power.

Prolog is based on top-down search:

• Prolog is goal-driven.
• Prolog programs are imperative: the order of evaluation matters.
• Prolog is Turing-complete – and hence programs may fail to terminate.

Prolog is a logic programming language, but it is like the C of logic languages.

5

From Datalog to Prolog: A Shift in Perspective

Datalog is based on bottom-up tabling:

• Datalog has a unique minimal model.
• Datalog offers strong guarantees about termination.
• Limited expressive power.

Prolog is based on top-down search:

• Prolog is goal-driven.
• Prolog programs are imperative: the order of evaluation matters.
• Prolog is Turing-complete – and hence programs may fail to terminate.

Prolog is a logic programming language, but it is like the C of logic languages.

5

Expressive Power

Prolog

Datalog¬

Datalog

RA

6

Syntax Update

In Flix the syntax of a rule is:
Path(x, z) :- Edge(x, y), Path(y, z).

In Prolog the syntax of the same rule is:
path(X, Z) :- edge(X, Y), path(Y, Z).

Moreover, in Prolog lowercase names are constants:
parent(emma, magnus).
parent(emma, daniela).

Warning: You will screw this up. Remember to check your casing.

7

Syntax Update

In Flix the syntax of a rule is:
Path(x, z) :- Edge(x, y), Path(y, z).

In Prolog the syntax of the same rule is:
path(X, Z) :- edge(X, Y), path(Y, Z).

Moreover, in Prolog lowercase names are constants:
parent(emma, magnus).
parent(emma, daniela).

Warning: You will screw this up. Remember to check your casing.

7

Syntax Update

In Flix the syntax of a rule is:
Path(x, z) :- Edge(x, y), Path(y, z).

In Prolog the syntax of the same rule is:
path(X, Z) :- edge(X, Y), path(Y, Z).

Moreover, in Prolog lowercase names are constants:
parent(emma, magnus).
parent(emma, daniela).

Warning: You will screw this up. Remember to check your casing.

7

Prolog is Query Driven

To write a Prolog program:

• We state the facts and rules of the domain.
• We ask a query (with zero or more free variables).

Prolog computes a single solution answering yes or no.

Here we can see Prolog’s roots in expert systems and artificial intelligence.

8

A Few Simple Queries (1/3)

Given the facts:
parent(emma, magnus).
parent(emma, daniela).

We can ask:
?- parent(emma, magnus).
yes

And we can ask:
?- parent(emma, augustus).
no

9

A Few Simple Queries (1/3)

Given the facts:
parent(emma, magnus).
parent(emma, daniela).

We can ask:
?- parent(emma, magnus).
yes

And we can ask:
?- parent(emma, augustus).
no

9

A Few Simple Queries (1/3)

Given the facts:
parent(emma, magnus).
parent(emma, daniela).

We can ask:
?- parent(emma, magnus).
yes

And we can ask:
?- parent(emma, augustus).
no

9

A Few Simple Queries (2/3)

We can also ask:
?- parent(emma, X).
X = magnus ? ;
X = daniela ? ;
no

We use the semicolon ; to prompt Prolog for additional solutions.

Prolog says no at the end because there are no more solutions!

10

A Few Simple Queries (3/3)

In Prolog parent is a relation, not a function, so we can also ask:
?- parent(X, magnus).
X = emma ? ;
no

Note that we are asking for “an input” that matches “an output”.

Question: What is the answer to the query parent(X, Y)?

11

A Few Simple Queries (3/3)

In Prolog parent is a relation, not a function, so we can also ask:
?- parent(X, magnus).
X = emma ? ;
no

Note that we are asking for “an input” that matches “an output”.

Question: What is the answer to the query parent(X, Y)?

11

Recursion in Prolog (1/2)

Prolog supports recursion:
edge(a, b).
edge(b, c).

path(X, Y) :- edge(X, Y).
path(X, Z) :- edge(X, Y), path(Y, Z).

And we can ask:
?- path(a, c).
yes

?- path(a, X).
X = b ? ;
X = c ? ;
no

12

Recursion in Prolog (1/2)

Prolog supports recursion:
edge(a, b).
edge(b, c).

path(X, Y) :- edge(X, Y).
path(X, Z) :- edge(X, Y), path(Y, Z).

And we can ask:
?- path(a, c).
yes

?- path(a, X).
X = b ? ;
X = c ? ;
no

12

Recursion in Prolog (2/2)

But we have to be careful. If we change the program to:
path(X, Z) :- path(Y, Z), edge(X, Y).
path(X, Y) :- edge(X, Y).

And ask:
?- path(a, c).

The program loops! But why?

Answer: Prolog uses top-to-bottom, left-to-right evaluation.

13

Recursion in Prolog (2/2)

But we have to be careful. If we change the program to:
path(X, Z) :- path(Y, Z), edge(X, Y).
path(X, Y) :- edge(X, Y).

And ask:
?- path(a, c).

The program loops! But why?

Answer: Prolog uses top-to-bottom, left-to-right evaluation.

13

Recursion in Prolog (2/2)

But we have to be careful. If we change the program to:
path(X, Z) :- path(Y, Z), edge(X, Y).
path(X, Y) :- edge(X, Y).

And ask:
?- path(a, c).

The program loops! But why?

Answer: Prolog uses top-to-bottom, left-to-right evaluation.

13

Recursion in Prolog (2/2)

But we have to be careful. If we change the program to:
path(X, Z) :- path(Y, Z), edge(X, Y).
path(X, Y) :- edge(X, Y).

And ask:
?- path(a, c).

The program loops! But why?

Answer: Prolog uses top-to-bottom, left-to-right evaluation.

13

Constructors in Prolog (1/2)

Prolog supports constructors:

• Allows us to construct compound value (lists, trees, etc).
• Allows us to construct infinite values (oops.)

Like in functional programming, we use constructors to build data structures.

14

Constructors in Prolog (2/2)

We can write:
networth(person(steve , carrel), 80). % in millions USD
networth(person(steve , jobs), 250). % in millions USD
networth(person(jeff, bezos), 186000). % in millions USD

And then we can ask:
?- networth(X, 80).
X = person(steve ,carrel)

We can also ask:
?- networth(person(steve , X), Y).
X = carrel , Y = 80 ? ;
X = jobs, Y = 250 ? ;
no

15

Constructors in Prolog (2/2)

We can write:
networth(person(steve , carrel), 80). % in millions USD
networth(person(steve , jobs), 250). % in millions USD
networth(person(jeff, bezos), 186000). % in millions USD

And then we can ask:
?- networth(X, 80).
X = person(steve ,carrel)

We can also ask:
?- networth(person(steve , X), Y).
X = carrel , Y = 80 ? ;
X = jobs, Y = 250 ? ;
no

15

Constructors in Prolog (2/2)

We can write:
networth(person(steve , carrel), 80). % in millions USD
networth(person(steve , jobs), 250). % in millions USD
networth(person(jeff, bezos), 186000). % in millions USD

And then we can ask:
?- networth(X, 80).
X = person(steve ,carrel)

We can also ask:
?- networth(person(steve , X), Y).
X = carrel , Y = 80 ? ;
X = jobs, Y = 250 ? ;
no

15

Lists in Prolog (1/2)

We can use constructors to encode lists:
len(nil, 0).
len(cons(_, Xs), R) :- len(Xs, N), R is N + 1.

And then we can ask:
len(cons(1, cons(2, cons(3, nil))), N).
N = 3 ? ;

Note: Please use the built-in lists: [] and [Head|Tail] in real programs.

16

Lists in Prolog (1/2)

We can use constructors to encode lists:
len(nil, 0).
len(cons(_, Xs), R) :- len(Xs, N), R is N + 1.

And then we can ask:
len(cons(1, cons(2, cons(3, nil))), N).
N = 3 ? ;

Note: Please use the built-in lists: [] and [Head|Tail] in real programs.

16

Lists in Prolog (1/2)

We can use constructors to encode lists:
len(nil, 0).
len(cons(_, Xs), R) :- len(Xs, N), R is N + 1.

And then we can ask:
len(cons(1, cons(2, cons(3, nil))), N).
N = 3 ? ;

Note: Please use the built-in lists: [] and [Head|Tail] in real programs.

16

Lists in Prolog (2/2)

We can also write:
appnd(nil, Ys, Ys).
appnd(cons(X, Xss), Ys, cons(X, Rs)) :- appnd(Xss, Ys, Rs).

And then we can ask:
?- appnd(cons(1, cons(2, nil)), cons(3, cons(4, nil)), R).
R = cons(1,cons(2,cons(3,cons(4,nil)))) ? ;

17

Lists in Prolog (2/2)

We can also write:
appnd(nil, Ys, Ys).
appnd(cons(X, Xss), Ys, cons(X, Rs)) :- appnd(Xss, Ys, Rs).

And then we can ask:
?- appnd(cons(1, cons(2, nil)), cons(3, cons(4, nil)), R).
R = cons(1,cons(2,cons(3,cons(4,nil)))) ? ;

17

Arithmetic in Prolog

We wrote:
R is N + 1.

because wanted to force Prolog to evaluate R to N + 1.

Note that:
?- 1 + 2 = 3. no
?- 3 is 1 + 2. yes

But
?- 1 + 2 is 3. no

The is operator forces evaluation on the right-hand side.

18

Arithmetic in Prolog

We wrote:
R is N + 1.

because wanted to force Prolog to evaluate R to N + 1.

Note that:
?- 1 + 2 = 3. no
?- 3 is 1 + 2. yes

But
?- 1 + 2 is 3. no

The is operator forces evaluation on the right-hand side.

18

Prolog is Dynamically Typed (1/2)

Prolog is dynamically typed, so if we write:
appnd(apple , cons(1, nil), R).

Prolog just tells us no. This may be okay.

But it can also get weird:
?- appnd(nil, apple , R).
R = apple ? ;

Here R is not a list! Oops!

19

Prolog is Dynamically Typed (1/2)

Prolog is dynamically typed, so if we write:
appnd(apple , cons(1, nil), R).

Prolog just tells us no. This may be okay.

But it can also get weird:
?- appnd(nil, apple , R).
R = apple ? ;

Here R is not a list! Oops!

19

Prolog is Dynamically Typed (2/2)

Like in Scheme, we can add dynamic type checks. We define the list “type”:
is_list(nil).
is_list(cons(_, Xs)) :- is_list(Xs).

And then we update our implementation of appnd:
appnd(nil, Ys, Ys) :- is_list(Ys).
appnd(cons(X, Xss), Ys, cons(X, Rs)) :-

is_list(Xss), is_list(Ys), is_list(Rs), appnd(Xss, Ys, Rs).

Now our silly query ?- appnd(nil, apple, R) returns no.

20

Prolog is Dynamically Typed (2/2)

Like in Scheme, we can add dynamic type checks. We define the list “type”:
is_list(nil).
is_list(cons(_, Xs)) :- is_list(Xs).

And then we update our implementation of appnd:
appnd(nil, Ys, Ys) :- is_list(Ys).
appnd(cons(X, Xss), Ys, cons(X, Rs)) :-

is_list(Xss), is_list(Ys), is_list(Rs), appnd(Xss, Ys, Rs).

Now our silly query ?- appnd(nil, apple, R) returns no.

20

Prolog Grammar

The core Prolog grammar is almost equivalent to the Datalog grammar:

p ∈ Program = c1 · · · cn

c ∈ Constraint = A0 ⇐ B1, · · · ,Bn.

A ∈ HeadAtom = p(t1, · · · , tn)

B ∈ BodyAtom = p(t1, · · · , tn) | \+ p(t1, · · · , tn)

t ∈ Term = k | x | c(t1, · · · , tn)

p ∈ Predicates = is a finite set of predicate symbols.
x ∈ Variables = is a finite set of variable symbols.

c ∈ Constructors = is a finite set of constructors.
k ∈ Constants = is a finite set of constants. 21

Unification

Matching a Goal to a Rule

Assume we have a Prolog program with the facts and rules:
len([], 0).
len([_Head|Tail], R) :- len(Tail, N), R is N + 1.

And we ask Prolog the query:
? len([1, 2], X).

which is really:
? len([1 | [2 | []]], X).

Question: How does Prolog know which rule to evaluate?

Question: And what should be the values of the variables in the rule?

Answer: Prolog uses unification to match the goal with the head atom.

22

Matching a Goal to a Rule

Assume we have a Prolog program with the facts and rules:
len([], 0).
len([_Head|Tail], R) :- len(Tail, N), R is N + 1.

And we ask Prolog the query:
? len([1, 2], X).

which is really:
? len([1 | [2 | []]], X).

Question: How does Prolog know which rule to evaluate?

Question: And what should be the values of the variables in the rule?

Answer: Prolog uses unification to match the goal with the head atom.

22

Matching a Goal to a Rule

Assume we have a Prolog program with the facts and rules:
len([], 0).
len([_Head|Tail], R) :- len(Tail, N), R is N + 1.

And we ask Prolog the query:
? len([1, 2], X).

which is really:
? len([1 | [2 | []]], X).

Question: How does Prolog know which rule to evaluate?

Question: And what should be the values of the variables in the rule?

Answer: Prolog uses unification to match the goal with the head atom.
22

What is Unification (1/2)

A substitution is a map from variables to terms.

For example, we can have the substitution:

s = {X 7→ 21,Y 7→ [1, 2, 3]}

We can apply a substitution to a term. For example,

if t = node(X,X,Y) then
s(t) = node(21, 21, [1, 2, 3])

23

What is Unification (1/2)

A substitution is a map from variables to terms.

For example, we can have the substitution:

s = {X 7→ 21,Y 7→ [1, 2, 3]}

We can apply a substitution to a term. For example,

if t = node(X,X,Y) then
s(t) = node(21, 21, [1, 2, 3])

23

What is Unification (1/2)

A substitution is a map from variables to terms.

For example, we can have the substitution:

s = {X 7→ 21,Y 7→ [1, 2, 3]}

We can apply a substitution to a term. For example,

if t = node(X,X,Y) then
s(t) = node(21, 21, [1, 2, 3])

23

What is Unification? (1/2)

A substitution is a map from variables to terms.

For example, we can have the substitution:

s = {X 7→ 21,Y 7→ [1, 2, 3,W]}

We can apply a substitution to a term. For example:

If t = node(X,X,Y) then

s(t) = node(21, 21, [1, 2, 3,W])

24

What is Unification? (1/2)

A substitution is a map from variables to terms.

For example, we can have the substitution:

s = {X 7→ 21,Y 7→ [1, 2, 3,W]}

We can apply a substitution to a term. For example:

If t = node(X,X,Y) then

s(t) = node(21, 21, [1, 2, 3,W])

24

What is Unification? (1/2)

A substitution is a map from variables to terms.

For example, we can have the substitution:

s = {X 7→ 21,Y 7→ [1, 2, 3,W]}

We can apply a substitution to a term. For example:

If t = node(X,X,Y) then

s(t) = node(21, 21, [1, 2, 3,W])

24

What is Unification? (2/2)

Unification: Given two terms t1 and t2, find a substitution s such that:

s(t1) = s(t2)

The substitution, when applied to both terms, makes them syntactically equal.

• We call such a substitution a unifier. It may not always exist.
• But if there is a unifier then there is a most-general unifier (MGU).

Sidenote: A cool idea is when = is replaced by ≡ leading to E-unification, i.e.
unification modulo some equational theory.

25

What is Unification? (2/2)

Unification: Given two terms t1 and t2, find a substitution s such that:

s(t1) = s(t2)

The substitution, when applied to both terms, makes them syntactically equal.

• We call such a substitution a unifier. It may not always exist.
• But if there is a unifier then there is a most-general unifier (MGU).

Sidenote: A cool idea is when = is replaced by ≡ leading to E-unification, i.e.
unification modulo some equational theory.

25

A Unification Algorithm (in Flix) (1/6)

We define the language of terms:
enum Term {

case Var(String),
case Cst(Int32),
case Pair(Term, Term)

}

A real term language, like the one used in Prolog, is richer.

However, the above term language is sufficient to illustrate the major points.

26

A Unification Algorithm (in Flix) (2/6)

We define a substitution as:
type alias Subst = Map[String , Term]

And we define a function that applies a substitution to a term:
def applySubst(s: Subst , t: Term): Term = match t {

case Term.Var(x) => Map.getWithDefault(x, t, s)
case Term.Cst(c) => Term.Cst(c)
case Term.Pair(t1, t2) =>

Term.Pair(applySubst(s, t1), applySubst(s, t2))
}

27

A Unification Algorithm (in Flix) (2/6)

We define a substitution as:
type alias Subst = Map[String , Term]

And we define a function that applies a substitution to a term:
def applySubst(s: Subst , t: Term): Term = match t {

case Term.Var(x) => Map.getWithDefault(x, t, s)
case Term.Cst(c) => Term.Cst(c)
case Term.Pair(t1, t2) =>

Term.Pair(applySubst(s, t1), applySubst(s, t2))
}

27

A Unification Algorithm (in Flix) (3/6)

Given two substitutions s1 and s2, we define a function to compose them.

The new substitution should morally have the effect of applying s1 to the term and
then applying s2 to that, i.e. we want:

compose(s1, s2)(t) = s2(s1(t))

Implementation: Left as an exercise for the reader.

Remark: Most bugs happen when implementing compose.

28

A Unification Algorithm (in Flix) (4/6)

We can now write a function to unify two terms:
def unify(t1: Term, t2: Term): Subst = match (t1, t2) {

case (Term.Cst(c1), Term.Cst(c2)) if c1 == c2 => Map.empty()
case (Term.Var(x), _) => Map.singleton(x, t2)
case (_, Term.Var(y)) => Map.singleton(y, t1)
case (Term.Pair(t11, t12), Term.Pair(t21, t22)) =>

let s1 = unify(t11, t21);
let s2 = unify(applySubst(s1, t12), applySubst(s1, t22));
compose(s1, s2)

case _ => unsafe throw new Exception("Unification failed")
}

Question: Why apply s1 to t12 and t22 before the recursive call to unify?

29

A Unification Algorithm (in Flix) (4/6)

We can now write a function to unify two terms:
def unify(t1: Term, t2: Term): Subst = match (t1, t2) {

case (Term.Cst(c1), Term.Cst(c2)) if c1 == c2 => Map.empty()
case (Term.Var(x), _) => Map.singleton(x, t2)
case (_, Term.Var(y)) => Map.singleton(y, t1)
case (Term.Pair(t11, t12), Term.Pair(t21, t22)) =>

let s1 = unify(t11, t21);
let s2 = unify(applySubst(s1, t12), applySubst(s1, t22));
compose(s1, s2)

case _ => unsafe throw new Exception("Unification failed")
}

Question: Why apply s1 to t12 and t22 before the recursive call to unify?

29

A Unification Algorithm (in Flix) (5/6)

Lets try it out:
unify(Cst(123), Var("x"))

=> Map#{x => Cst(123)}

unify(Pair(Var("x"), Var("x")), Pair(Cst(123), Var("y")))
=> Map#{x => Cst(123), y => Cst(123)}

What about:
unify(Var("x"), Pair(Cst(123), Var("x")))

=> Map#{x => Pair(Cst(123), Var(x))}

Ooos! This is incorrect. What’s the problem?

30

A Unification Algorithm (in Flix) (5/6)

Lets try it out:
unify(Cst(123), Var("x"))

=> Map#{x => Cst(123)}

unify(Pair(Var("x"), Var("x")), Pair(Cst(123), Var("y")))
=> Map#{x => Cst(123), y => Cst(123)}

What about:
unify(Var("x"), Pair(Cst(123), Var("x")))

=> Map#{x => Pair(Cst(123), Var(x))}

Ooos! This is incorrect. What’s the problem?

30

A Unification Algorithm (in Flix) (5/6)

Lets try it out:
unify(Cst(123), Var("x"))

=> Map#{x => Cst(123)}

unify(Pair(Var("x"), Var("x")), Pair(Cst(123), Var("y")))
=> Map#{x => Cst(123), y => Cst(123)}

What about:
unify(Var("x"), Pair(Cst(123), Var("x")))

=> Map#{x => Pair(Cst(123), Var(x))}

Ooos! This is incorrect. What’s the problem?

30

A Unification Algorithm (in Flix) (5/6)

Lets try it out:
unify(Cst(123), Var("x"))

=> Map#{x => Cst(123)}

unify(Pair(Var("x"), Var("x")), Pair(Cst(123), Var("y")))
=> Map#{x => Cst(123), y => Cst(123)}

What about:
unify(Var("x"), Pair(Cst(123), Var("x")))

=> Map#{x => Pair(Cst(123), Var(x))}

Ooos! This is incorrect. What’s the problem?

30

A Unification Algorithm (in Flix) (6/6)

We modify the two cases for variables as follows:
case (Term.Var(x), t2) =>

if (Set.memberOf(x, freeVars(t2)))
unsafe throw new Exception("Occurs Check")

else
Map.singleton(x, t2)

// The other case is symmetric.

Here the freeVars function is defined in the obvious way.

The occurs check ensures that we do not construct substitutions where a variable
occurs recursively within the term it is unified with.

Note: The occurs check is expensive, so some Prolog implementations omit it.

31

A Unification Algorithm (in Flix) (6/6)

We modify the two cases for variables as follows:
case (Term.Var(x), t2) =>

if (Set.memberOf(x, freeVars(t2)))
unsafe throw new Exception("Occurs Check")

else
Map.singleton(x, t2)

// The other case is symmetric.

Here the freeVars function is defined in the obvious way.

The occurs check ensures that we do not construct substitutions where a variable
occurs recursively within the term it is unified with.

Note: The occurs check is expensive, so some Prolog implementations omit it.
31

Matching a Goal to a Rule – Continued (1/2)

Recall that we had:
len([], 0).
len([_Head|Tail], R) :- len(Tail, N), R is N + 1.

And we ask:
? len([1 | [2 | []]], X).

Prolog uses unification to the determine that:

1. We cannot unify [] with [1|[2|[]]] so the first rule (fact) is not applicable.
2. We can unify [_Head|Tail] with [1|[2|[]]] using the substitution

{_Head 7→ 1,Tail 7→ [2|[]]}.
3. We then apply the substitution to the rule body to obtain the new goals:

len([2|[]],R) and R is X + 1, and recurse.

32

Matching a Goal to a Rule – Continued (1/2)

Recall that we had:
len([], 0).
len([_Head|Tail], R) :- len(Tail, N), R is N + 1.

And we ask:
? len([1 | [2 | []]], X).

Prolog uses unification to the determine that:

1. We cannot unify [] with [1|[2|[]]] so the first rule (fact) is not applicable.
2. We can unify [_Head|Tail] with [1|[2|[]]] using the substitution

{_Head 7→ 1,Tail 7→ [2|[]]}.
3. We then apply the substitution to the rule body to obtain the new goals:

len([2|[]],R) and R is X + 1, and recurse.

32

Matching a Goal to a Rule – Continued (1/2)

Recall that we had:
len([], 0).
len([_Head|Tail], R) :- len(Tail, N), R is N + 1.

And we ask:
? len([1 | [2 | []]], X).

Prolog uses unification to the determine that:

1. We cannot unify [] with [1|[2|[]]] so the first rule (fact) is not applicable.

2. We can unify [_Head|Tail] with [1|[2|[]]] using the substitution
{_Head 7→ 1,Tail 7→ [2|[]]}.

3. We then apply the substitution to the rule body to obtain the new goals:
len([2|[]],R) and R is X + 1, and recurse.

32

Matching a Goal to a Rule – Continued (1/2)

Recall that we had:
len([], 0).
len([_Head|Tail], R) :- len(Tail, N), R is N + 1.

And we ask:
? len([1 | [2 | []]], X).

Prolog uses unification to the determine that:

1. We cannot unify [] with [1|[2|[]]] so the first rule (fact) is not applicable.
2. We can unify [_Head|Tail] with [1|[2|[]]] using the substitution

{_Head 7→ 1,Tail 7→ [2|[]]}.

3. We then apply the substitution to the rule body to obtain the new goals:
len([2|[]],R) and R is X + 1, and recurse.

32

Matching a Goal to a Rule – Continued (1/2)

Recall that we had:
len([], 0).
len([_Head|Tail], R) :- len(Tail, N), R is N + 1.

And we ask:
? len([1 | [2 | []]], X).

Prolog uses unification to the determine that:

1. We cannot unify [] with [1|[2|[]]] so the first rule (fact) is not applicable.
2. We can unify [_Head|Tail] with [1|[2|[]]] using the substitution

{_Head 7→ 1,Tail 7→ [2|[]]}.
3. We then apply the substitution to the rule body to obtain the new goals:

len([2|[]],R) and R is X + 1, and recurse.
32

Matching a Goal to a Rule – Continued (2/2)

To recap:

• Prolog searches for a fact or rule from top to bottom of the file where the current
goal unifies with the head atom.

• If a match is found, Prolog applies the found substition to the rule body which
now become the sub-goals of the query.

• The sub-goals are evaluated from left to right.
• A goal is satisfied once we reach a fact.

Hence: Be careful about evaluation order. It matters!

33

Matching a Goal to a Rule – Continued (2/2)

To recap:

• Prolog searches for a fact or rule from top to bottom of the file where the current
goal unifies with the head atom.

• If a match is found, Prolog applies the found substition to the rule body which
now become the sub-goals of the query.

• The sub-goals are evaluated from left to right.
• A goal is satisfied once we reach a fact.

Hence: Be careful about evaluation order. It matters!

33

Matching a Goal to a Rule – Continued (2/2)

To recap:

• Prolog searches for a fact or rule from top to bottom of the file where the current
goal unifies with the head atom.

• If a match is found, Prolog applies the found substition to the rule body which
now become the sub-goals of the query.

• The sub-goals are evaluated from left to right.
• A goal is satisfied once we reach a fact.

Hence: Be careful about evaluation order. It matters!

33

Matching a Goal to a Rule – Continued (2/2)

To recap:

• Prolog searches for a fact or rule from top to bottom of the file where the current
goal unifies with the head atom.

• If a match is found, Prolog applies the found substition to the rule body which
now become the sub-goals of the query.

• The sub-goals are evaluated from left to right.

• A goal is satisfied once we reach a fact.

Hence: Be careful about evaluation order. It matters!

33

Matching a Goal to a Rule – Continued (2/2)

To recap:

• Prolog searches for a fact or rule from top to bottom of the file where the current
goal unifies with the head atom.

• If a match is found, Prolog applies the found substition to the rule body which
now become the sub-goals of the query.

• The sub-goals are evaluated from left to right.
• A goal is satisfied once we reach a fact.

Hence: Be careful about evaluation order. It matters!

33

Matching a Goal to a Rule – Continued (2/2)

To recap:

• Prolog searches for a fact or rule from top to bottom of the file where the current
goal unifies with the head atom.

• If a match is found, Prolog applies the found substition to the rule body which
now become the sub-goals of the query.

• The sub-goals are evaluated from left to right.
• A goal is satisfied once we reach a fact.

Hence: Be careful about evaluation order. It matters!

33

Print Debugging is Back! (1/2)

If we write:
edge(1, 2).
edge(2, 3).
path(X, Y) :- edge(X, Y), write('rule1\n').
path(X, Z) :- edge(X, Y), path(Y, Z), write('rule2\n').

And ask:
-? path(1, 3).

Prolog prints:
rule1
rule2
yes

34

Print Debugging is Back! (1/2)

If we write:
edge(1, 2).
edge(2, 3).
path(X, Y) :- edge(X, Y), write('rule1\n').
path(X, Z) :- edge(X, Y), path(Y, Z), write('rule2\n').

And ask:
-? path(1, 3).

Prolog prints:
rule1
rule2
yes

34

Print Debugging is Back! (1/2)

If we write:
edge(1, 2).
edge(2, 3).
path(X, Y) :- edge(X, Y), write('rule1\n').
path(X, Z) :- edge(X, Y), path(Y, Z), write('rule2\n').

And ask:
-? path(1, 3).

Prolog prints:
rule1
rule2
yes

34

Print Debugging is Back! (2/2)

We can explore Prolog’s evaluation order by writing:
path(X, Z) :- write('A'), edge(X, Y), write('B'), path(Y, Z), write('C').

And asking:
-? path(1, 3).

Question: What does this print?

35

Print Debugging is Back! (2/2)

We can explore Prolog’s evaluation order by writing:
path(X, Z) :- write('A'), edge(X, Y), write('B'), path(Y, Z), write('C').

And asking:
-? path(1, 3).

Question: What does this print?

35

Prolog Extensions

Prolog comes with several extensions:

• Cuts (a mechanism to control backtracking)
• Higher-order predicates (e.g. findall)
• Reflection (e.g. clause)
• Tabling (ala Datalog)

You will most likely need some of these for any serious Prolog programming.

36

A Larger Example

The Wolf, Goat, and Cabbage Problem (1/2)

“The wolf, goat, and cabbage problem is a river crossing puzzle. It dates back to at least the
9th century and has entered the folklore of several cultures.” – Wikipedia 37

The Wolf, Goat, and Cabbage Problem (2/2)

Via Wikipedia:

“A farmer with a wolf, a goat, and a cabbage must cross a river by boat. The
boat can carry only the farmer and a single item. If left unattended together,
the wolf would eat the goat, or the goat would eat the cabbage. How can they
cross the river without anything being eaten?”

We can solve this problem with Prolog.

Question: But can you solve it with your brain? (and some paper...)

38

The Wolf, Goat, and Cabbage Problem (2/2)

Via Wikipedia:

“A farmer with a wolf, a goat, and a cabbage must cross a river by boat. The
boat can carry only the farmer and a single item. If left unattended together,
the wolf would eat the goat, or the goat would eat the cabbage. How can they
cross the river without anything being eaten?”

We can solve this problem with Prolog.

Question: But can you solve it with your brain? (and some paper...)

38

Wolf, Goat, and Cabbage in Prolog (1/8)

We consider the river to have two sides: the west bank (w) and east bank (e).

Initially, everyone will be on the west bank.

We can then define that one can travel from west to east and east to west:
travel(w, e).
travel(e, w).

We further assume we have four constants: farmer, wolf, goat, cabbage.

39

Wolf, Goat, and Cabbage in Prolog (2/8)

We define a configuration of the problem as a 4-tuple (using a list): We order the
travelers as: farmer, wolf, goat, cabbage. Now:

• The list: [w, w, w, w] means that everyone is on the west bank.
• The list: [e, e, e, e] means that everyone is on the east bank.
• The list: [e, e, e, w] means that the farmer, wolf, and goat is on the east bank

whereas the cabbage is on the west bank — which is okay.
• The list: [e, w, w, e] means that the farmer and cabbage is on the east bank

whereas the wolf and the goat is on the east bank — which is NOT OKAY!

40

Wolf, Goat, and Cabbage in Prolog (3/8)

We now define a ternary relation: move(state1, moved, state2):

If the farmer and wolf are on the west bank then they can travel to the east bank.

The goat and cabbage stay where they are.

We can capture this with the fact:
move([w, w, G, C], wolf, [e, e, G, C]).

They can also travel back, so we need:
move([e, e, G, C], wolf, [w, w, G, C]).

This is a bit tedious, so let us make use of travel:
move([X, X, G, C], wolf, [Y, Y, G, C]) :- travel(X, Y).

41

Wolf, Goat, and Cabbage in Prolog (3/8)

We now define a ternary relation: move(state1, moved, state2):

If the farmer and wolf are on the west bank then they can travel to the east bank.

The goat and cabbage stay where they are.

We can capture this with the fact:
move([w, w, G, C], wolf, [e, e, G, C]).

They can also travel back, so we need:
move([e, e, G, C], wolf, [w, w, G, C]).

This is a bit tedious, so let us make use of travel:
move([X, X, G, C], wolf, [Y, Y, G, C]) :- travel(X, Y).

41

Wolf, Goat, and Cabbage in Prolog (3/8)

We now define a ternary relation: move(state1, moved, state2):

If the farmer and wolf are on the west bank then they can travel to the east bank.

The goat and cabbage stay where they are.

We can capture this with the fact:
move([w, w, G, C], wolf, [e, e, G, C]).

They can also travel back, so we need:
move([e, e, G, C], wolf, [w, w, G, C]).

This is a bit tedious, so let us make use of travel:
move([X, X, G, C], wolf, [Y, Y, G, C]) :- travel(X, Y).

41

Wolf, Goat, and Cabbage in Prolog (4/8)

We have:
move([X, X, G, C], wolf, [Y, Y, G, C]) :- travel(X, Y).

and we need three more rules:
move([X, W, X, C], goat, [Y, W, Y, C]) :- travel(X, Y).
move([X, W, G, X], cabbage , [Y, W, G, Y]) :- travel(X, Y).
move([X, W, G, C], nothing , [Y, W, G, C]) :- travel(X, Y).

Question: Why do we need the last rule?

42

Wolf, Goat, and Cabbage in Prolog (4/8)

We have:
move([X, X, G, C], wolf, [Y, Y, G, C]) :- travel(X, Y).

and we need three more rules:
move([X, W, X, C], goat, [Y, W, Y, C]) :- travel(X, Y).
move([X, W, G, X], cabbage , [Y, W, G, Y]) :- travel(X, Y).
move([X, W, G, C], nothing , [Y, W, G, C]) :- travel(X, Y).

Question: Why do we need the last rule?

42

Wolf, Goat, and Cabbage in Prolog (4/8)

We have:
move([X, X, G, C], wolf, [Y, Y, G, C]) :- travel(X, Y).

and we need three more rules:
move([X, W, X, C], goat, [Y, W, Y, C]) :- travel(X, Y).
move([X, W, G, X], cabbage , [Y, W, G, Y]) :- travel(X, Y).
move([X, W, G, C], nothing , [Y, W, G, C]) :- travel(X, Y).

Question: Why do we need the last rule?

42

Wolf, Goat, and Cabbage in Prolog (5/8)

Recall: We want to ensure that the (a) wolf does not eat the goat, and (b) the goat
does not eat the cabbage.

We define the states that are safe. There are two cases:

(1) The goat is on the same bank as the farmer:
safe([X, _, X, _]). // Recall: farmer , wolf, goat, cabbage

(2) Or the wolf and cabbage are on the same bank as the farmer:
safe([X, X, _, X]).

Question: Are (1) and (2) equivalent to (a) and (b)?

43

Wolf, Goat, and Cabbage in Prolog (5/8)

Recall: We want to ensure that the (a) wolf does not eat the goat, and (b) the goat
does not eat the cabbage.

We define the states that are safe. There are two cases:

(1) The goat is on the same bank as the farmer:
safe([X, _, X, _]). // Recall: farmer , wolf, goat, cabbage

(2) Or the wolf and cabbage are on the same bank as the farmer:
safe([X, X, _, X]).

Question: Are (1) and (2) equivalent to (a) and (b)?

43

Wolf, Goat, and Cabbage in Prolog (6/8)

We can now define a solution: A solution is a pair of a state and a list of moves that
brings everyone safely to the east bank.

If everyone is already on the east bank there is nothing to be done:
solution([e, e, e, e], []).

We can move to a new state provided that it is (i) safe and (ii) solvable:
solution(State , [FirstMove | OtherMoves]) :-

move(State , FirstMove , NextState),
safe(NextState),
solution(NextState , OtherMoves).

44

Wolf, Goat, and Cabbage in Prolog (6/8)

We can now define a solution: A solution is a pair of a state and a list of moves that
brings everyone safely to the east bank.

If everyone is already on the east bank there is nothing to be done:
solution([e, e, e, e], []).

We can move to a new state provided that it is (i) safe and (ii) solvable:
solution(State , [FirstMove | OtherMoves]) :-

move(State , FirstMove , NextState),
safe(NextState),
solution(NextState , OtherMoves).

44

Wolf, Goat, and Cabbage in Prolog (6/8)

We can now define a solution: A solution is a pair of a state and a list of moves that
brings everyone safely to the east bank.

If everyone is already on the east bank there is nothing to be done:
solution([e, e, e, e], []).

We can move to a new state provided that it is (i) safe and (ii) solvable:
solution(State , [FirstMove | OtherMoves]) :-

move(State , FirstMove , NextState),
safe(NextState),
solution(NextState , OtherMoves).

44

Wolf, Goat, and Cabbage in Prolog (7/8)

We can now ask Prolog to compute a solution:
? solution([w, w, w, w], X).

And then we wait ...

And then we wait some more ...

And, hey, what’s happening?

Problem: We have infinitely many moves leading to no solution. The farmer is just
going back and forth, forever.

45

Wolf, Goat, and Cabbage in Prolog (7/8)

We can now ask Prolog to compute a solution:
? solution([w, w, w, w], X).

And then we wait ...

And then we wait some more ...

And, hey, what’s happening?

Problem: We have infinitely many moves leading to no solution. The farmer is just
going back and forth, forever.

45

Wolf, Goat, and Cabbage in Prolog (7/8)

We can now ask Prolog to compute a solution:
? solution([w, w, w, w], X).

And then we wait ...

And then we wait some more ...

And, hey, what’s happening?

Problem: We have infinitely many moves leading to no solution. The farmer is just
going back and forth, forever.

45

Wolf, Goat, and Cabbage in Prolog (7/8)

We can now ask Prolog to compute a solution:
? solution([w, w, w, w], X).

And then we wait ...

And then we wait some more ...

And, hey, what’s happening?

Problem: We have infinitely many moves leading to no solution. The farmer is just
going back and forth, forever.

45

Wolf, Goat, and Cabbage in Prolog (7/8)

We can now ask Prolog to compute a solution:
? solution([w, w, w, w], X).

And then we wait ...

And then we wait some more ...

And, hey, what’s happening?

Problem: We have infinitely many moves leading to no solution. The farmer is just
going back and forth, forever.

45

Wolf, Goat, and Cabbage in Prolog (8/8)

Solution: We (indirectly) bound the recursion depth.

How? We fix the length of the list with moves:
? length(X, 7), solution([w, w, w, w], X).

Prolog now answers:
X = [goat, nothing , wolf, goat, cabbage , nothing , goat]

Question: Why did I choose 7? How did I know what number to choose?

Example inspired by UCSD: https://cseweb.ucsd.edu/classes/fa09/cse130/misc/prolog/goat_etc.html

46

https://cseweb.ucsd.edu/classes/fa09/cse130/misc/prolog/goat_etc.html

Wolf, Goat, and Cabbage in Prolog (8/8)

Solution: We (indirectly) bound the recursion depth.

How? We fix the length of the list with moves:
? length(X, 7), solution([w, w, w, w], X).

Prolog now answers:
X = [goat, nothing , wolf, goat, cabbage , nothing , goat]

Question: Why did I choose 7? How did I know what number to choose?

Example inspired by UCSD: https://cseweb.ucsd.edu/classes/fa09/cse130/misc/prolog/goat_etc.html

46

https://cseweb.ucsd.edu/classes/fa09/cse130/misc/prolog/goat_etc.html

Wolf, Goat, and Cabbage in Prolog (8/8)

Solution: We (indirectly) bound the recursion depth.

How? We fix the length of the list with moves:
? length(X, 7), solution([w, w, w, w], X).

Prolog now answers:
X = [goat, nothing , wolf, goat, cabbage , nothing , goat]

Question: Why did I choose 7? How did I know what number to choose?

Example inspired by UCSD: https://cseweb.ucsd.edu/classes/fa09/cse130/misc/prolog/goat_etc.html

46

https://cseweb.ucsd.edu/classes/fa09/cse130/misc/prolog/goat_etc.html

Wolf, Goat, and Cabbage in Prolog (8/8)

Solution: We (indirectly) bound the recursion depth.

How? We fix the length of the list with moves:
? length(X, 7), solution([w, w, w, w], X).

Prolog now answers:
X = [goat, nothing , wolf, goat, cabbage , nothing , goat]

Question: Why did I choose 7? How did I know what number to choose?

Example inspired by UCSD: https://cseweb.ucsd.edu/classes/fa09/cse130/misc/prolog/goat_etc.html

46

https://cseweb.ucsd.edu/classes/fa09/cse130/misc/prolog/goat_etc.html

Wolf, Goat, and Cabbage in Prolog (8/8)

Solution: We (indirectly) bound the recursion depth.

How? We fix the length of the list with moves:
? length(X, 7), solution([w, w, w, w], X).

Prolog now answers:
X = [goat, nothing , wolf, goat, cabbage , nothing , goat]

Question: Why did I choose 7? How did I know what number to choose?

Example inspired by UCSD: https://cseweb.ucsd.edu/classes/fa09/cse130/misc/prolog/goat_etc.html

46

https://cseweb.ucsd.edu/classes/fa09/cse130/misc/prolog/goat_etc.html

Getting Started with Prolog

Prolog Dialects and Implementations

As with Datalog there are many Prolog dialects and implementations.

The most popular and battle-tested Prolog implementations are:

• Ciao Prolog is an open-source research project from UPM and IMDEA
https://ciao-lang.org/

• Gnu Prolog is an open-source Prolog implementation
http://www.gprolog.org/

• SWI Prolog is an open-source Prolog implementation
https://www.swi-prolog.org/

• XSB Prolog is a commercial Prolog implementation with tabling
https://xsb.com/xsb-prolog/

47

https://ciao-lang.org/
http://www.gprolog.org/
https://www.swi-prolog.org/
https://xsb.com/xsb-prolog/

Ciao Prolog

I recommend that you use Ciao Prolog (with SWI Prolog as backup)

• Ciao has been developed for more than 40 years.
• Ciao is large research project with many cool ideas.
• Runs in the browser via WebAssembly:

https://ciao-lang.org/playground/

48

https://ciao-lang.org/playground/

49

Ciao Playground

Your first task:

Run the Wolf, Goat, and Cabbage program on the playground.

https://ciao-lang.org/playground/

50

https://ciao-lang.org/playground/

Summary

Prolog is a goal-driven logic programming language:

• Datalog is for tabling. Prolog is for search.

Prolog is Turing-complete. We get the good and the bad:

• We can express what we want, but programs may fail to terminate.

Prolog is less declarative than Datalog: evaluation order matters.

Prolog supports compound data types (lists, trees, ...).

51

Summary

Prolog is a goal-driven logic programming language:

• Datalog is for tabling. Prolog is for search.

Prolog is Turing-complete. We get the good and the bad:

• We can express what we want, but programs may fail to terminate.

Prolog is less declarative than Datalog: evaluation order matters.

Prolog supports compound data types (lists, trees, ...).

51

Summary

Prolog is a goal-driven logic programming language:

• Datalog is for tabling. Prolog is for search.

Prolog is Turing-complete. We get the good and the bad:

• We can express what we want, but programs may fail to terminate.

Prolog is less declarative than Datalog: evaluation order matters.

Prolog supports compound data types (lists, trees, ...).

51

Summary

Prolog is a goal-driven logic programming language:

• Datalog is for tabling. Prolog is for search.

Prolog is Turing-complete. We get the good and the bad:

• We can express what we want, but programs may fail to terminate.

Prolog is less declarative than Datalog: evaluation order matters.

Prolog supports compound data types (lists, trees, ...).

51

51

	Introduction to Prolog
	Unification
	A Larger Example
	Getting Started with Prolog

